June 10, Week 2

Today: Chapter 2, Constant Acceleration Problems

Homework \#2 now available on webpage

Please register your clicker. (There are 5 students without registered clickers.)

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

$$
\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t
$$

Constant Acceleration

For a constant acceleration:

$$
\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t
$$

Constant Acceleration

For a constant acceleration:

$$
\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t
$$

$$
x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2}
$$

Constant Acceleration

For a constant acceleration:

$$
\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t
$$

$$
x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2}
$$

$$
\left(v_{x}\right)_{f}^{2}=\left(v_{x}\right)_{i}^{2}+2 a_{x} \Delta x \leftarrow \text { From Algebra }
$$

Free Fall

In the absence of air resistance, near the surface of any planet, gravity causes any object to have a constant acceleration. Acceleration due to gravity has a magnitude always abbreviated g.

Free Fall

In the absence of air resistance, near the surface of any planet, gravity causes any object to have a constant acceleration. Acceleration due to gravity has a magnitude always abbreviated g.

On earth, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Note: g is always given as positive. The direction of gravity is down, so negative signs may have to be used in problem solving.

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:
(a) y_{f}

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:
(a) y_{f}
(b) y_{i}

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:
(a) y_{f}
(b) y_{i}
(c) $\left(v_{y}\right)_{f}$

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:
(a) y_{f}
(b) y_{i}
(C) $\left(v_{y}\right)_{f}$
(d) $\left(v_{y}\right)_{i}$

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:
(a) y_{f}
(b) y_{i}
(c) $\left(v_{y}\right)_{f}$
(d) $\left(v_{y}\right)_{i}$
(e) a_{y}

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:
(a) y_{f}
(b) y_{i}
(C) $\left(v_{y}\right)_{f}$
(d) $\left(v_{y}\right)_{i}$
(e) a_{y}

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:
(C) $\left(v_{y}\right)_{f}$
\uparrow
Velocity gives speed and direction

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:

> Known:
(C) $\left(v_{y}\right)_{f}$
\uparrow
Velocity gives speed and direction

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:

> Known:

$$
\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s}
$$

(C) $\left(v_{y}\right)_{f}$
\uparrow
Velocity gives speed and direction

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:

Known:

$\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s} \leftarrow \mathrm{Up}$ is positive
(C) $\left(v_{y}\right)_{f}$
\uparrow
Velocity gives speed and direction

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:

Known:

$$
\begin{aligned}
& \left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s} \leftarrow \text { Up is positive } \\
& a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(C) $\left(v_{y}\right)_{f}$

\uparrow
Velocity gives speed and direction

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after 3 s , we would solve for:

Known:

$$
\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s} \leftarrow \mathrm{Up} \text { is positive }
$$

$$
a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2} \leftarrow \text { The problem }
$$ starts the instant

(C) $\left(v_{y}\right)_{f}$
\uparrow
Velocity gives speed and direction
the egg leaves the hand

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after 3 s , we would solve for:

Known:

$\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s} \leftarrow$ Up is positive

$$
a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2} \leftarrow \text { The problem }
$$ starts the instant

(C) $\left(v_{y}\right)_{f}$

$$
\Delta t=3 \mathrm{~s}
$$

Velocity gives speed and direction

Free-Fall Exercise I

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine whether the egg is going up or down after $3 s$, we would solve for:

Known:

$$
\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s} \leftarrow \mathrm{Up} \text { is positive }
$$

$$
a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2} \underset{\text { starts the instant }}{\leftarrow} \text { The problem }
$$

(c) $\left(v_{y}\right)_{f}$ the egg leaves the hand

$$
\uparrow \quad \Delta t=3 \mathrm{~s}
$$

Velocity gives speed and direction

$$
\begin{aligned}
& \left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}+a_{y} \Delta t \text { gives } \\
& \left(v_{y}\right)_{y}=-14.4 \mathrm{~m} / \mathrm{s} \Rightarrow 14.4 \mathrm{~m} / \mathrm{s}, \text { down }
\end{aligned}
$$

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(a) Both the velocity and acceleration are zero.

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(a) Both the velocity and acceleration are zero.
(b) Neither the velocity nor acceleration are zero.

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(a) Both the velocity and acceleration are zero.
(b) Neither the velocity nor acceleration are zero.
(c) The acceleration is zero but the velocity is non-zero.

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(a) Both the velocity and acceleration are zero.
(b) Neither the velocity nor acceleration are zero.
(c) The acceleration is zero but the velocity is non-zero.
(d) The velocity is zero but the acceleration is non-zero.

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(a) Both the velocity and acceleration are zero.
(b) Neither the velocity nor acceleration are zero.
(c) The acceleration is zero but the velocity is non-zero.
(d) The velocity is zero but the acceleration is non-zero.
(e) None of these.

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(a) Both the velocity and acceleration are zero.
(b) Neither the velocity nor acceleration are zero.
(c) The acceleration is zero but the velocity is non-zero.
(d) The velocity is zero but the acceleration is non-zero.
(e) None of these.

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(d) The velocity is zero but the acceleration is non-zero.

Known:
$\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s}$
$a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\left(v_{y}\right)_{f}=0$
$y_{i}=0$

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(d) The velocity is zero but the acceleration is non-zero.

Known:

$\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s}$
$a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\left(v_{y}\right)_{f}=0$
$y_{i}=0$

Unknown:

$y_{f}=$?
$\Delta t=?$

Free-Fall Exercise II

A person at the top of a building throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. To determine the egg's maximum height, we would use the fact that:
(d) The velocity is zero but the acceleration is non-zero.

Known:
$\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s}$
$a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\left(v_{y}\right)_{f}=0$
$y_{i}=0$
Using $\left(v_{y}\right)_{f}^{2}=\left(v_{y}\right)_{i}^{2}+2 a_{y} \Delta y \quad$ gives $y_{f}=11.5 m$

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?
(a) We could set $y_{i}=0$ and $y_{f}=-30 \mathrm{~m}$.

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?
(a) We could set $y_{i}=0$ and $y_{f}=-30 \mathrm{~m}$.
(b) We could set $y_{i}=30 m$ and $y_{f}=0$.

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?
(a) We could set $y_{i}=0$ and $y_{f}=-30 \mathrm{~m}$.
(b) We could set $y_{i}=30 \mathrm{~m}$ and $y_{f}=0$.
(c) Its velocity is zero.

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?
(a) We could set $y_{i}=0$ and $y_{f}=-30 m$.
(b) We could set $y_{i}=30 m$ and $y_{f}=0$.
(c) Its velocity is zero.
(d) We are actually considering the instant before it hits the ground, so its acceleration is still $-g$.

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?
(a) We could set $y_{i}=0$ and $y_{f}=-30 \mathrm{~m}$.
(b) We could set $y_{i}=30 \mathrm{~m}$ and $y_{f}=0$.
(c) Its velocity is zero.
(d) We are actually considering the instant before it hits the ground, so its acceleration is still $-g$.
(e) Both (c) and (d) are false.

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?
(a) We could set $y_{i}=0$ and $y_{f}=-30 m$.
(b) We could set $y_{i}=30 \mathrm{~m}$ and $y_{f}=0$.
(c) Its velocity is zero.
(d) We are actually considering the instant before it hits the ground, so its acceleration is still $-g$.
(e) Both (c) and (d) are false.

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?

Known:

$\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s}$
$a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$y_{f}=-30 m$
$y_{i}=0$

Unknown:

$\left(v_{y}\right)_{f}=$?
$\Delta t=?$

Free-Fall Exercise III

A person at the top of a building 30 m high, throws an egg upwards at $15 \mathrm{~m} / \mathrm{s}$. Which of the following statements about the egg hitting the ground is False?

Known:
$\left(v_{y}\right)_{i}=15 \mathrm{~m} / \mathrm{s}$
$a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$y_{f}=-30 m$
$y_{i}=0$
Using $y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2}$ and solving a quadratic equation gives $\Delta t=4.44 \mathrm{~s}$

Example I

$$
\begin{gathered}
x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t \\
\left(v_{x}\right)_{f}^{2}=\left(v_{x}\right)_{i}^{2}+2 a_{x} \Delta x
\end{gathered}
$$

Example: Phyllis is traveling on a straight highway with a speed of $30.0 \mathrm{~m} / \mathrm{s}$ and wishes to pass Stanley who is in the car in front of her. Phyllis hits the gas causing a constant acceleration of $1.25 \mathrm{~m} / \mathrm{s}^{2}$. After going 150 m , phyllis is a safe distance in front of Stanley, so she decelerates back down to $30.0 \mathrm{~m} / \mathrm{s}$ in 5.0 s . How long did it take and what total distance did Phyllis cover while passing Stanley? Assume Phyllis stayed in the same lane the whole time.

