June 10, Week 2

Today: Chapter 2, Constant Acceleration Problems

Homework #2 now available on webpage

Please register your clicker. (There are 5 students without registered clickers.)

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

For a constant acceleration:

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

For a constant acceleration:

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$x_f = x_i + (v_x)_i \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

For a constant acceleration:

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$x_f = x_i + (v_x)_i \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$(v_x)_f^2 = (v_x)_i^2 + 2a_x \Delta x \leftarrow \text{From Algebra}$$

Free Fall

In the absence of air resistance, near the surface of *any* planet, gravity causes any object to have a constant acceleration. Acceleration due to gravity has a magnitude always abbreviated g.

Free Fall

In the absence of air resistance, near the surface of *any* planet, gravity causes any object to have a constant acceleration. Acceleration due to gravity has a magnitude always abbreviated g.

On earth, $g = 9.8 \, m/s^2$

Note: g is always given as positive. The direction of gravity is down, so negative signs may have to be used in problem solving.

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

(a) y_f

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

- (a) y_f
- (b) y_i

- (a) y_f
- (b) y_i
- (c) $(v_y)_f$

- (a) y_f
- (b) y_i
- (c) $(v_y)_f$
- (d) $(v_y)_i$

- (a) y_f
- (b) y_i
- (c) $(v_y)_f$
- (d) $(v_y)_i$
- (e) a_y

- (a) y_f
- (b) y_i
- (c) $(v_y)_f$
- (d) $(v_y)_i$
- (e) a_y

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

Velocity gives speed and direction

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

Known:

Velocity gives speed and direction

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

Known:

$$(v_y)_i = 15 \, m/s$$

Velocity gives speed and direction

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

Known:

$$(v_y)_i = 15 \, m/s \leftarrow \text{Up is positive}$$

Velocity gives speed and direction

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

Known:

 $(v_y)_i = 15 \, m/s \leftarrow \text{Up is positive}$

$$a_y = -g = -9.8 \, m/s^2$$

Velocity gives speed and direction

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

Known:

 $(v_y)_i = 15 \, m/s \leftarrow \text{Up is positive}$

 $a_y = -g = -9.8\,m/s^2 \leftarrow$ The problem starts the instant the egg leaves the hand

$$\boxed{ \begin{array}{c} \textbf{(c)} \ (v_y)_f \end{array} }$$

Velocity gives speed and direction

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

Known:

 $(v_y)_i = 15 \, m/s \leftarrow \text{Up is positive}$

 $a_y = -g = -9.8 \, m/s^2 \leftarrow$ The problem starts the instant the egg leaves the hand

$$\Delta t = 3 s$$

Velocity gives speed and direction

Constant Acceleration

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine whether the egg is going up or down after $3\,s$, we would solve for:

Known:

$$(v_y)_i = 15 \, m/s \leftarrow \text{Up is positive}$$

$$a_y = -g = -9.8 \, m/s^2 \leftarrow$$
 The problem starts the instant the egg leaves the hand

$$\Delta t = 3 s$$

$$(v_y)_f = (v_y)_i + a_y \Delta t$$
 gives
$$(v_y)_y = -14.4 \, m/s \Rightarrow 14.4 \, m/s, \, \text{down}$$

Telocity gives speed and direction

A person at the top of a building throws an egg upwards at $15 \, m/s$. To determine the egg's maximum height, we would use the fact that:

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine the egg's maximum height, we would use the fact that:

(a) Both the velocity and acceleration are zero.

A person at the top of a building throws an egg upwards at $15 \, m/s$. To determine the egg's maximum height, we would use the fact that:

(a) Both the velocity and acceleration are zero.

(b) Neither the velocity nor acceleration are zero.

A person at the top of a building throws an egg upwards at $15 \, m/s$. To determine the egg's maximum height, we would use the fact that:

- (a) Both the velocity and acceleration are zero.
- (b) Neither the velocity nor acceleration are zero.
- (c) The acceleration is zero but the velocity is non-zero.

A person at the top of a building throws an egg upwards at $15 \, m/s$. To determine the egg's maximum height, we would use the fact that:

- (a) Both the velocity and acceleration are zero.
- (b) Neither the velocity nor acceleration are zero.
- (c) The acceleration is zero but the velocity is non-zero.
- (d) The velocity is zero but the acceleration is non-zero.

A person at the top of a building throws an egg upwards at $15 \, m/s$. To determine the egg's maximum height, we would use the fact that:

- (a) Both the velocity and acceleration are zero.
- (b) Neither the velocity nor acceleration are zero.
- (c) The acceleration is zero but the velocity is non-zero.
- (d) The velocity is zero but the acceleration is non-zero.
- (e) None of these.

A person at the top of a building throws an egg upwards at $15 \, m/s$. To determine the egg's maximum height, we would use the fact that:

- (a) Both the velocity and acceleration are zero.
- (b) Neither the velocity nor acceleration are zero.
- (c) The acceleration is zero but the velocity is non-zero.
 - (d) The velocity is zero but the acceleration is non-zero.

(e) None of these.

A person at the top of a building throws an egg upwards at $15 \, m/s$. To determine the egg's maximum height, we would use the fact that:

(d) The velocity is zero but the acceleration is non-zero.

Known:

$$(v_y)_i = 15 \, m/s$$
$$a_y = -9.8 \, m/s^2$$
$$(v_y)_f = 0$$
$$y_i = 0$$

A person at the top of a building throws an egg upwards at $15\,m/s$. To determine the egg's maximum height, we would use the fact that:

(d) The velocity is zero but the acceleration is non-zero.

Known:

$$(v_y)_i = 15 \, m/s$$

$$a_y = -9.8 \, m/s^2$$

$$(v_y)_f = 0$$

$$y_i = 0$$

Unknown:

$$y_f = ?$$

$$\Delta t = ?$$

A person at the top of a building throws an egg upwards at $15 \, m/s$. To determine the egg's maximum height, we would use the fact that:

(d) The velocity is zero but the acceleration is non-zero.

Known:

Unknown:

$$(v_y)_i = 15 \, m/s$$

$$y_f = ?$$

$$a_y = -9.8 \, m/s^2$$

$$\Delta t = ?$$

$$(v_y)_f = 0$$

$$y_i = 0$$

Using
$$(v_y)_f^2 = (v_y)_i^2 + 2a_y \Delta y$$
 gives $y_f = 11.5 \, m$

A person at the top of a building $30\,m$ high, throws an egg upwards at $15\,m/s$. Which of the following statements about the egg hitting the ground is *False*?

A person at the top of a building $30 \, m$ high, throws an egg upwards at $15 \, m/s$. Which of the following statements about the egg hitting the ground is *False*?

(a) We could set $y_i = 0$ and $y_f = -30 m$.

A person at the top of a building $30\,m$ high, throws an egg upwards at $15\,m/s$. Which of the following statements about the egg hitting the ground is *False*?

- (a) We could set $y_i = 0$ and $y_f = -30 m$.
- (b) We could set $y_i = 30 m$ and $y_f = 0$.

A person at the top of a building $30 \, m$ high, throws an egg upwards at $15 \, m/s$. Which of the following statements about the egg hitting the ground is *False*?

- (a) We could set $y_i = 0$ and $y_f = -30 m$.
- (b) We could set $y_i = 30 m$ and $y_f = 0$.
- (c) Its velocity is zero.

A person at the top of a building $30 \, m$ high, throws an egg upwards at $15 \, m/s$. Which of the following statements about the egg hitting the ground is *False*?

- (a) We could set $y_i = 0$ and $y_f = -30 \, m$.
- (b) We could set $y_i = 30 m$ and $y_f = 0$.
- (c) Its velocity is zero.
- (d) We are actually considering the instant before it hits the ground, so its acceleration is still -g.

A person at the top of a building $30 \, m$ high, throws an egg upwards at $15 \, m/s$. Which of the following statements about the egg hitting the ground is *False*?

- (a) We could set $y_i = 0$ and $y_f = -30 \, m$.
- (b) We could set $y_i = 30 m$ and $y_f = 0$.
- (c) Its velocity is zero.
- (d) We are actually considering the instant before it hits the ground, so its acceleration is still -g.
- (e) Both (c) and (d) are false.

A person at the top of a building $30 \, m$ high, throws an egg upwards at $15 \, m/s$. Which of the following statements about the egg hitting the ground is *False*?

- (a) We could set $y_i = 0$ and $y_f = -30 \, m$.
- (b) We could set $y_i = 30 m$ and $y_f = 0$.
 - (c) Its velocity is zero.
- (d) We are actually considering the instant before it hits the ground, so its acceleration is still -g.
- (e) Both (c) and (d) are false.

A person at the top of a building $30\,m$ high, throws an egg upwards at $15\,m/s$. Which of the following statements about the egg hitting the ground is *False*?

Known:

$$(v_y)_i = 15 \, m/s$$

$$a_y = -9.8 \, m/s^2$$

$$y_f = -30 \, m$$

$$y_i = 0$$

Unknown:

$$(v_y)_f = ?$$

$$\Delta t = ?$$

A person at the top of a building $30 \, m$ high, throws an egg upwards at $15 \, m/s$. Which of the following statements about the egg hitting the ground is *False*?

Known:

$$(v_y)_i = 15 \, m/s$$

$$a_y = -9.8 \, m/s^2$$

$$y_f = -30 \, m$$

$$y_i = 0$$

Unknown:

$$(v_y)_f = ?$$

$$\Delta t = ?$$

Using $y_f = y_i + (v_y)_i \Delta t + \frac{1}{2} a_y (\Delta t)^2$ and solving a quadratic equation gives $\Delta t = 4.44 \, s$

Example I

$$x_f = x_i + (v_x)_i \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$(v_x)_f^2 = (v_x)_i^2 + 2a_x \Delta x$$

Example: Phyllis is traveling on a straight highway with a speed of $30.0\,m/s$ and wishes to pass Stanley who is in the car in front of her. Phyllis hits the gas causing a constant acceleration of $1.25\,m/s^2$. After going $150\,m$, phyllis is a safe distance in front of Stanley, so she decelerates back down to $30.0\,m/s$ in $5.0\,s$. How long did it take and what total distance did Phyllis cover while passing Stanley? Assume Phyllis stayed in the same lane the whole time.