June 5, Week 1

Physics 151, Dr. Mark Morgan-Tracy

Today: Chapter 2, Acceleration

Please Register your Clicker.

Homework Assignment #1 - Due Tomorrow. Solutions will be posted tomorrow afternoon.

Mini-Test #1 on Monday, so no reading assignment.

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.

Average Velocity:

$$v_{av} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

tells use how fast and in what direction an object went on average during the elapsed time Δt .

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.

Average Velocity:

$$v_{av} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

tells use how fast and in what direction an object went on average during the elapsed time Δt .

Instantaneous velocity, v_x - How fast and in what direction for one instant of time t.

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

To find the velocity at one time t we use the fact that all curves look straight when magnified

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

To find the velocity at one time t we use the fact that all curves look straight when magnified

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

To find the velocity at one time t we use the fact that all curves look straight when magnified

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

To find the velocity at one time t we use the fact that all curves look straight when magnified

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

To find the velocity at one time t we use the fact that all curves look straight when magnified

Note: To make this exact we have to make the magnification infnite. In calculus, this is called taking a derivative.

Slope = Velocity at time t

Which of the following position versus time graphs corresponds to an object which is slowing down?

Which of the following position versus time graphs corresponds to an object which is slowing down?

Which of the following position versus time graphs corresponds to an object which is slowing down?

Which of the following position versus time graphs corresponds to an object which is slowing down?

Which of the following position versus time graphs corresponds to an object which is slowing down?

Which of the following position versus time graphs corresponds to an object which is slowing down?

Which of the following position versus time graphs corresponds to an object which is slowing down?

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

(a) 1h

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

(a) 1h (b) 3h

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

(a) 1h (b) 3h (c) 5h

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

Acceleration, a_x - rate at which *velocity* changes.

Acceleration, a_x - rate at which *velocity* changes.

Since we are only going to do constant acceleration problems:

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

Acceleration, a_x - rate at which *velocity* changes.

Since we are only going to do constant acceleration problems:

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

Unit: $\frac{m/s}{s}$

Acceleration, a_x - rate at which *velocity* changes.

Since we are only going to do constant acceleration problems:

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

Unit: $\frac{m/s}{s} = m/s^2$

A rabbit accelerates from rest to $4\,m/s$ in $1\,s$. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2\,m/s$ in a time that is:

A rabbit accelerates from rest to $4\,m/s$ in $1\,s$. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2\,m/s$ in a time that is:

(a) Larger than 2s

A rabbit accelerates from rest to $4\,m/s$ in $1\,s$. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2\,m/s$ in a time that is:

- (a) Larger than 2s
- (b) Between 1s and 2s

A rabbit accelerates from rest to $4\,m/s$ in $1\,s$. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2\,m/s$ in a time that is:

- (a) Larger than 2s
- (b) Between 1s and 2s
- (c) Between 0.5 s and 1 s

A rabbit accelerates from rest to $4\,m/s$ in $1\,s$. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2\,m/s$ in a time that is:

- (a) Larger than 2s
- (b) Between 1s and 2s
- (c) Between 0.5 s and 1 s
- (d) Smaller than 0.5 s

A rabbit accelerates from rest to $4\,m/s$ in $1\,s$. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2\,m/s$ in a time that is:

- (a) Larger than 2s
- (b) Between 1s and 2s
- (c) Between 0.5 s and 1 s
- (d) Smaller than 0.5 s
- (e) It is physically impossible for a turtle to have a larger acceleration than a rabbit.

A rabbit accelerates from rest to $4\,m/s$ in $1\,s$. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2\,m/s$ in a time that is:

- (a) Larger than 2s
- (b) Between 1s and 2s
- (c) Between 0.5 s and 1 s
- (d) Smaller than 0.5 s
- (e) It is physically impossible for a turtle to have a larger acceleration than a rabbit.

A rabbit accelerates from rest to 4 m/s in 1 s. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to 2 m/s in a time that is:

For the rabbit:

$$a_r = \frac{4\,m/s}{1\,s} = 4\,m/s^2$$

A rabbit accelerates from rest to 4 m/s in 1 s. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to 2 m/s in a time that is:

For the rabbit:

$$a_r = \frac{4\,m/s}{1\,s} = 4\,m/s^2$$

For the turtle:
$$a_t = \frac{2 m/s}{\Delta t_t}$$

A rabbit accelerates from rest to 4 m/s in 1 s. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to 2 m/s in a time that is:

For the rabbit:

$$a_r = \frac{4\,m/s}{1\,s} = 4\,m/s^2$$

For the turtle: $a_t = \frac{2 \, m/s}{\Delta t_t}$

For
$$\Delta t_t = 0.5 \, s$$
: $a_t = \frac{2 \, m/s}{0.5 \, s} = 4 \, m/s^2$

A rabbit accelerates from rest to 4 m/s in 1 s. For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to 2 m/s in a time that is:

For the rabbit:

$$a_r = \frac{4\,m/s}{1\,s} = 4\,m/s^2$$

For the turtle: $a_t = \frac{2 \, m/s}{\Delta t_t}$

For
$$\Delta t_t = 0.5 \, s$$
: $a_t = \frac{2 \, m/s}{0.5 \, s} = 4 \, m/s^2$

Dividing by a smaller number gives a larger result.

As with velocity, instantaneous acceleration, a, is a slope.

As with velocity, instantaneous acceleration, a, is a slope.

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

As with velocity, instantaneous acceleration, a, is a slope.

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

Acceleration is the slope of the velocity-versus-time graph.

As with velocity, instantaneous acceleration, a, is a slope.

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

As with velocity, instantaneous acceleration, a, is a slope.

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

As with velocity, instantaneous acceleration, a, is a slope.

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

As with velocity, instantaneous acceleration, a, is a slope.

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

As with velocity, instantaneous acceleration, a, is a slope.

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

Speeding Up

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

Speeding Up

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

•
Speeding Up

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

Have to redraw v's starting at the same place

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

 v_f Speeding Up

Have to redraw v's starting at the same place

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

 v_f Speeding Up

Have to redraw v's starting at the same place

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

 v_f Speeding Up

Have to redraw v's starting at the same place

 v_f v_i

 Δv points from the end of v_i to the end of v_f

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

Have to redraw v's starting at the same place

 Δv points from the end of v_i to the end of v_f

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

Have to redraw v's starting at the same place

 Δv points from the Δv to left $\Rightarrow a_x$ to left end of v_i to the end of $\Rightarrow a_x$ is negative. v_f

Acceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You *cannot* say that positive a_x means speeding up and negative a_x means slowing down.

 a_x is in the same direction of Δv

Have to redraw v's starting at the same place

 Δv points from the Δv to left $\Rightarrow a_x$ to left end of v_i to the end of v_f

 $\Rightarrow a_x$ is negative.

you prefer: The velocity got more negative with time.

Acceleration

In Summary:

When a_x and v_x have the same sign, speed increases. When a_x and v_x have the opposite sign, speed decreases.

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

x	v_x	a_x

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_x	a_x
(a)	1	+	+

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_x	a_x
(a) (b)	_	+	+
(b)	_	+	_

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_x	a_x
(a) (b) (c)	_	+	+
(b)	_	+	_
(c)	_	_	+

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_x	a_x
(a) (b)	_	+	+
(b)	_	+	_
(c)	_	_	+
(d)	_	_	_

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_x	a_x
(a)	_	+	+
(b)	_	+	_
(c)	_	_	+
(d)		_	_
(e)	+	_	+

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	\boldsymbol{x}	v_x	a_x
(a) (b)	_	+	+
(b)	_	+	_
(c)	_	_	+
(d) (e)	_	_	_
(e)	+	_	+

	x	v_x	a_x
(a)	_	+	+

	x	v_x	a_x
(a)	_	+	+

	x	v_x	a_x
(a)	1	+	+

	x	v_x	a_x
(b)	_	+	_

	x	v_x	a_x
(a)	_	+	+

	x	v_x	a_x
(b)	1	+	1

	x	v_x	a_x
(a)	_	+	+

	x	v_x	a_x
(b)		+	1

	x	v_x	a_x
(d)	1	_	1

	x	v_x	a_x
(a)	1	+	+

	x	v_x	a_x
(b)	1	+	1

	x	v_x	a_x
(d)	_	1	_

	x	v_x	a_x
(a)	_	+	+

	x	v_x	a_x
(b)	_	+	_

	x	v_x	a_x
(d)			

	x	v_x	a_x
(e)	+	1	+

	x	v_x	a_x
(a)	_	+	+

	x	v_x	a_x
(b)	1	+	1

	x	v_x	a_x
(d)	1	1	_

•	•	•
		0

	x	v_x	a_x
(e)	+	_	+

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

For a constant acceleration:

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$x_f = x_i + (v_x)_i \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$x_f = x_i + (v_x)_i \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$(v_x)_f^2 = (v_x)_i^2 + 2a_x \Delta x \leftarrow \text{From Algebra}$$

Example

$$x_f = x_i + (v_x)_i \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$(v_x)_f^2 = (v_x)_i^2 + 2a_x \Delta x$$

Example: A car is traveling on a straight road with a speed of $30.0 \, m/s$ when the driver hits the brakes causing a constant deceleration of $2.5 \, m/s^2$. How long does it take and how far does the car go while stopping?