June 5, Week 1

Physics 151, Dr. Mark Morgan-Tracy

Today: Chapter 2, Acceleration

Please Register your Clicker.

Homework Assignment \#1-Due Tomorrow. Solutions will be posted tomorrow afternoon.

Mini-Test \#1 on Monday, so no reading assignment.

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.
Average Velocity:

$$
v_{a v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

tells use how fast and in what direction an object went on average during the elapsed time Δt.

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.
Average Velocity:

$$
v_{a v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

tells use how fast and in what direction an object went on average during the elapsed time Δt.

Instantaneous velocity, v_{x} - How fast and in what direction for one instant of time t.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

To find the velocity at one time t we use the fact that all curves look straight when magnified

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Note: To make this exact we have to make the magnification infnite. In calculus, this is called taking a derivative.

Velocity Exercise I

Which of the following position versus time graphs corresponds to an object which is slowing down?

Velocity Exercise I

Which of the following position versus time graphs corresponds to an object which is slowing down?

Velocity Exercise I

Which of the following position versus time graphs corresponds to an object which is slowing down?

Velocity Exercise I

Which of the following position versus time graphs corresponds to an object which is slowing down?

Velocity Exercise I

Which of the following position versus time graphs corresponds to an object which is slowing down?

Velocity Exercise I

Which of the following position versus time graphs corresponds to an object which is slowing down?

Velocity Exercise I

Which of the following position versus time graphs corresponds to an object which is slowing down?

Velocity Followup

Slowing Down

Velocity Followup

(a)

Slowing Down

Velocity Followup

(a)

Velocity Followup

Slowing Down

Velocity Followup

Slowing Down

Velocity Followup

(a)

Slowing Down
(b) ${ }_{-}^{x}$
Speeding Up

Velocity Followup

Slowing Down

Speeding Up

Velocity Followup

Slowing Down

Speeding Up

Velocity Followup

Slowing Down

Speeding Up

Velocity Followup

Velocity Exercise II

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

Velocity Exercise II

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

(a) 1 h

Velocity Exercise II

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

(a) $1 h$
(b) $3 h$

Velocity Exercise II

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

(a) $1 h$
(b) $3 h$
(c) $5 h$

Velocity Exercise II

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?
$x(\mathrm{~km})$

(a) 1 h
(b) $3 h$
(c) $5 h$
(d) Both $1 h$

Velocity Exercise II

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?
x (km

(a) 1 h
(b) $3 h$
(c) $5 h$
(d) $\begin{aligned} & \text { Both } 1 h \\ & \text { and } 5 h\end{aligned}$ (e) $7 h$

Velocity Exercise II

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?

(a) 1 h
(b) $3 h$
(c) 5 h
(d) $\begin{aligned} & \text { Both } 1 h \\ & \text { and } 5 h\end{aligned}$ (e) $7 h$

Velocity Exercise II

The position-versus-time graphs for two people, Phyllis and Stanley, are shown below. At what time or times do they have the same velocity?
x (km

Phyllis

(a) 1 h
(b) $3 h$
(c) 5 h
(d) Both $1 h$ (e) $7 h$

Acceleration

Acceleration, a_{x} - rate at which velocity changes.

Acceleration

Acceleration, a_{x} - rate at which velocity changes.
Since we are only going to do constant acceleration problems:

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Acceleration

Acceleration, a_{x} - rate at which velocity changes.
Since we are only going to do constant acceleration problems:

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Unit: $\frac{m / s}{s}$

Acceleration

Acceleration, a_{x} - rate at which velocity changes.
Since we are only going to do constant acceleration problems:

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Unit: $\frac{m / s}{s}=\mathrm{m} / \mathrm{s}^{2}$

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:
(a) Larger than 2 s

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:
(a) Larger than $2 s$
(b) Between $1 s$ and $2 s$

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:
(a) Larger than 2 s
(b) Between $1 s$ and $2 s$
(c) Between 0.5 s and 1 s

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:
(a) Larger than 2 s
(b) Between $1 s$ and $2 s$
(c) Between 0.5 s and 1 s
(d) Smaller than 0.5 s

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:
(a) Larger than $2 s$
(b) Between $1 s$ and $2 s$
(c) Between 0.5 s and 1 s
(d) Smaller than 0.5 s
(e) It is physically impossible for a turtle to have a larger acceleration than a rabbit.

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:
(a) Larger than $2 s$
(b) Between $1 s$ and $2 s$
(c) Between 0.5 s and 1 s
(d) Smaller than 0.5 s
(e) It is physically impossible for a turtle to have a larger acceleration than a rabbit.

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:

For the rabbit:

$$
a_{r}=\frac{4 m / s}{1 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}
$$

(d) Smaller than 0.5 s

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:

For the rabbit:
$a_{r}=\frac{4 \mathrm{~m} / \mathrm{s}}{1 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}$
For the turtle: $a_{t}=\frac{2 \mathrm{~m} / \mathrm{s}}{\Delta t_{t}}$
(d) Smaller than 0.5 s

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:

For the rabbit:

$$
a_{r}=\frac{4 m / s}{1 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}
$$

For the turtle: $a_{t}=\frac{2 \mathrm{~m} / \mathrm{s}}{\Delta t_{t}}$
(d) Smaller than 0.5 s

$$
\text { For } \Delta t_{t}=0.5 \mathrm{~s}: a_{t}=\frac{2 \mathrm{~m} / \mathrm{s}}{0.5 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}
$$

Acceleration Exercise

A rabbit accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 1 s . For a turtle to have a larger acceleration than the rabbit, he would need to go from rest to $2 \mathrm{~m} / \mathrm{s}$ in a time that is:

For the rabbit:
$a_{r}=\frac{4 \mathrm{~m} / \mathrm{s}}{1 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}$
For the turtle: $a_{t}=\frac{2 \mathrm{~m} / \mathrm{s}}{\Delta t_{t}}$
(d) Smaller than 0.5 s

For $\Delta t_{t}=0.5 \mathrm{~s}: a_{t}=\frac{2 \mathrm{~m} / \mathrm{s}}{0.5 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}$
Dividing by a smaller number gives a larger result.

Acceleration II

As with velocity, instantaneous acceleration, a, is a slope.

Acceleration II

As with velocity, instantaneous acceleration, a, is a slope.

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Acceleration II

As with velocity, instantaneous acceleration, a, is a slope.

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Acceleration is the slope of the velocity-versus-time graph.

Acceleration II

As with velocity, instantaneous acceleration, a, is a slope.

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Acceleration is the slope of the velocity-versus-time graph.

Acceleration II

As with velocity, instantaneous acceleration, a, is a slope.

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Acceleration is the slope of the velocity-versus-time graph.

Acceleration II

As with velocity, instantaneous acceleration, a, is a slope.

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Acceleration is the slope of the velocity-versus-time graph.

Acceleration II

As with velocity, instantaneous acceleration, a, is a slope.

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Acceleration is the slope of the velocity-versus-time graph.

Acceleration II

As with velocity, instantaneous acceleration, a, is a slope.

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Acceleration is the slope of the velocity-versus-time graph.

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv
\bullet - Speeding Up

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv
$\bullet \quad \bullet \bullet$ Speeding Up

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv
$\bullet \longleftarrow \bullet \bullet$ Speeding Up

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Have to redraw v's starting at the same place

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Have to redraw v's starting at the same place

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Have to redraw v's starting at the same place

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Have to redraw v 's starting at the same place
Δv points from the end of v_{i} to the end of v_{f}

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Have to redraw v's starting at the same place
Δv points from the end of v_{i} to the end of v_{f}

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Have to redraw v's starting at the same place
Δv points from the Δv to left $\Rightarrow a_{x}$ to left end of v_{i} to the end of $\Rightarrow a_{x}$ is negative.
v_{f}

Acceleration versus Deceleration

The direction (and therefore) sign of acceleration is more complicated than position's or velocity's

You cannot say that positive a_{x} means speeding up and negative a_{x} means slowing down.
a_{x} is in the same direction of Δv

Have to redraw v 's starting at the same place
Δv points from the Δv to left $\Rightarrow a_{x}$ to left end of v_{i} to the end of $\Rightarrow a_{x}$ is negative.

Δv to left $\Rightarrow a$ to left If you prefer: The velocity got more negative with time.

Acceleration versus Deceleration II

In Summary:
When a_{x} and v_{x} have the same sign, speed increases. When a_{x} and v_{x} have the opposite sign, speed decreases.

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_{x}	a_{x}
(a)	-	+	+

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_{x}	a_{x}
(a)	-	+	+
(b)	-	+	-

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_{x}	a_{x}
(a)	-	+	+
(b)	-	+	-
(c)	-	-	+

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_{x}	a_{x}
(a)	-	+	+
(b)	-	+	-
(c)	-	-	+
(d)	-	-	-

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_{x}	a_{x}
(a)	-	+	+
(b)	-	+	-
(c)	-	-	+
(d)	-	-	-
(e)	+	-	+

Acceleration Exercise

For the following motion diagram and coordinate system, which of the following are correct signs for its kinematical quantities?

	x	v_{x}	a_{x}
(a)	-	+	+
(b)	-	+	-
(c)	-	-	+
(d)	-	-	-
(e)	+	-	+

Acceleration Followup

	x	v_{x}	a_{x}
(a)	-	+	+

Acceleration Followup

	x	v_{x}	a_{x}
(a)	-	+	+

Acceleration Followup

	x	v_{x}	a_{x}
(a)	-	+	+

	x	v_{x}	a_{x}
(b)	-	+	-

Acceleration Followup

	x	v_{x}	a_{x}
(a)	-	+	+

	x	v_{x}	a_{x}
(b)	-	+	-

Acceleration Followup

	x	v_{x}	a_{x}
(a)	-	+	+

	x	v_{x}	a_{x}
(b)	-	+	-

	x	v_{x}	a_{x}
$(\mathrm{~d})$	-	-	-

Acceleration Followup

	x	v_{x}	a_{x}
(a)	-	+	+

$$
\begin{aligned}
& +x \\
& \hline
\end{aligned}
$$

	x	v_{x}	a_{x}
(b)	-	+	-

	x	v_{x}	a_{x}
$(\mathrm{~d})$	-	-	-

Acceleration Followup

	x	v_{x}	a_{x}
(a)	-	+	+

$$
\begin{aligned}
& +x \\
& \hline
\end{aligned}
$$

	x	v_{x}	a_{x}
(b)	-	+	-

	x	v_{x}	a_{x}
$(\mathrm{~d})$	-	-	-

	x	v_{x}	a_{x}
(e)	+	-	+

Acceleration Followup

	x	v_{x}	a_{x}
(a)	-	+	+

	x	v_{x}	a_{x}
(b)	-	+	-

	x	v_{x}	a_{x}
$(\mathrm{~d})$	-	-	-

	x	v_{x}	a_{x}
(e)	+	-	+

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:
$\xrightarrow{a_{x}} \xrightarrow{ } t$

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

Constant Acceleration

For a constant acceleration:

$$
\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t
$$

Constant Acceleration

For a constant acceleration:

$$
\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t
$$

Constant Acceleration

For a constant acceleration:

$$
\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t
$$

$$
x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2}
$$

Constant Acceleration

For a constant acceleration:

$$
\begin{aligned}
& \left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t \\
& x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \\
& \left(v_{x}\right)_{f}^{2}=\left(v_{x}\right)_{i}^{2}+2 a_{x} \Delta x \leftarrow \text { From Algebra }
\end{aligned}
$$

Example

$$
\begin{gathered}
x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}+a_{x} \Delta t \\
\left(v_{x}\right)_{f}^{2}=\left(v_{x}\right)_{i}^{2}+2 a_{x} \Delta x
\end{gathered}
$$

Example: A car is traveling on a straight road with a speed of $30.0 \mathrm{~m} / \mathrm{s}$ when the driver hits the brakes causing a constant deceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take and how far does the car go while stopping?

