June 4, Week 1

Physics 151, Dr. Mark Morgan-Tracy

Today: Chapter 2, Motion Graphs

Please Register your Clicker.

Homework Assignment \#1-Available on class webpage, Due this Friday, June 6.

S. I. Units

To compare physical quantities, everyone must use the same system of units.

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)
- Unit of mass

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)
- Unit of mass $=$ kilogram $(k g)$

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)
- Unit of mass $=$ kilogram $(k g)$
- Unit of time

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)
- Unit of mass $=$ kilogram $(k g)$
- Unit of time $=$ second (s)

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- $\operatorname{mega}(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- mili $(m)=0.001=10^{-3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$
- mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- \quad giga $(G)=10^{9}$
- tera $(T)=10^{12}$
- nano $(n)=10^{-9}$
- \quad mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- \quad giga $(G)=10^{9}$
- tera $(T)=10^{12}$
- \quad mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$
- nano $(n)=10^{-9}$
- pico $(p)=10^{-12}$

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?
(a) $500 \mathrm{~cm}, 3 \mathrm{~m}, \quad 6000 \mu \mathrm{~m}$

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?
(a) $500 \mathrm{~cm}, 3 \mathrm{~m}, \quad 6000 \mu \mathrm{~m}$
(b) $3 \mathrm{~m}, \quad 500 \mathrm{~cm}, \quad 6000 \mu \mathrm{~m}$

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?
(a) $500 \mathrm{~cm}, 3 \mathrm{~m}, \quad 6000 \mu \mathrm{~m}$
(b) $3 \mathrm{~m}, 500 \mathrm{~cm}, \quad 6000 \mu \mathrm{~m}$
(c) $6000 \mu \mathrm{~m}, ~ 3 \mathrm{~m}, \quad 500 \mathrm{~cm}$

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?
(a) $500 \mathrm{~cm}, 3 \mathrm{~m}, \quad 6000 \mu \mathrm{~m}$
(b) $3 \mathrm{~m}, 500 \mathrm{~cm}, \quad 6000 \mu \mathrm{~m}$
(c) $6000 \mu \mathrm{~m}, ~ 3 \mathrm{~m}, \quad 500 \mathrm{~cm}$
(d) $6000 \mu \mathrm{~m}, ~ 500 \mathrm{~cm}, 3 \mathrm{~m}$

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?
(a) $500 \mathrm{~cm}, 3 \mathrm{~m}, \quad 6000 \mu \mathrm{~m}$
(b) $3 \mathrm{~m}, 500 \mathrm{~cm}, \quad 6000 \mu \mathrm{~m}$
(c) $6000 \mu \mathrm{~m}, ~ 3 \mathrm{~m}, 500 \mathrm{~cm}$
(d) $6000 \mu \mathrm{~m}, 500 \mathrm{~cm}, 3 \mathrm{~m}$
(e) $3 \mathrm{~m}, ~ 6000 \mu \mathrm{~m}, 500 \mathrm{~cm}$

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?
(a) $500 \mathrm{~cm}, 3 \mathrm{~m}, \quad 6000 \mu \mathrm{~m}$
(b) $3 \mathrm{~m}, \quad 500 \mathrm{~cm}, \quad 6000 \mu \mathrm{~m}$
(c) $6000 \mu \mathrm{~m}, \quad 3 \mathrm{~m}, \quad 500 \mathrm{~cm}$
(d) $6000 \mu \mathrm{~m}, \quad 500 \mathrm{~cm}, \quad 3 \mathrm{~m}$
(e) $3 \mathrm{~m}, \quad 6000 \mu \mathrm{~m}, \quad 500 \mathrm{~cm}$

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?
(c) $6000 \mu \mathrm{~m}, 3 \mathrm{~m}, \quad 500 \mathrm{~cm}$

$$
6000 \mu m=6000\left(10^{-6}\right) m=6 \times 10^{3}\left(10^{-6}\right) m=6 \times 10^{-3} \mathrm{~m}=0.006 \mathrm{~m}
$$

S.I. Exercise

Which of the following correctly lists these distances from smallest to largest?
(c) $6000 \mu \mathrm{~m}, \quad 3 \mathrm{~m}, \quad 500 \mathrm{~cm}$

$$
6000 \mu m=6000\left(10^{-6}\right) m=6 \times 10^{3}\left(10^{-6}\right) m=6 \times 10^{-3} m=0.006 m
$$

$500 \mathrm{~cm}=500\left(10^{-2}\right) m=5 \times 10^{2}\left(10^{-2}\right) m=5 m$

Significant Figures

Significant Figures

- Significant Figures $=$ express the accuracy of a measurement.

Significant Figures

- Significant Figures = express the accuracy of a measurement.
- Usually just the number of digits you see in the number.

Significant Figures

- Significant Figures = express the accuracy of a measurement.
- Usually just the number of digits you see in the number.
- Exceptions:
- Strings of zeros at the end of large numbers or at the beginning of small numbers are not significant.

Significant Figures

- Significant Figures = express the accuracy of a measurement.
- Usually just the number of digits you see in the number.
- Exceptions:
- Strings of zeros at the end of large numbers or at the beginning of small numbers are not significant.
- Zeroes at the end of all numbers are significant.

Significant Figures

- Significant Figures = express the accuracy of a measurement.
- Usually just the number of digits you see in the number.
- Exceptions:
- Strings of zeros at the end of large numbers or at the beginning of small numbers are not significant.
- Zeroes at the end of all numbers are significant.
- When multiplying or dividing, we round to the fewest number of significant figures.

Significant Figures

- Significant Figures = express the accuracy of a measurement.
- Usually just the number of digits you see in the number.
- Exceptions:
- Strings of zeros at the end of large numbers or at the beginning of small numbers are not significant.
- Zeroes at the end of all numbers are significant.
- When multiplying or dividing, we round to the fewest number of significant figures.
- When adding or subtracting, we round to the fewest places past the decimal point.

Significant Figures Exercise

A car travels from $x=-70 \mathrm{~km}$ to $x=-57 \mathrm{~km}$ in 7 minutes. What is the car's average velocity, in kilometers per minute, recorded to the proper number of significant figures? Use the standard convention for direction.

Significant Figures Exercise

A car travels from $x=-70 \mathrm{~km}$ to $x=-57 \mathrm{~km}$ in 7 minutes. What is the car's average velocity, in kilometers per minute, recorded to the proper number of significant figures? Use the standard convention for direction.
(a) $\frac{13 \mathrm{~km}}{7 \mathrm{~min}}=1.857 \mathrm{~km} / \mathrm{min}$

Significant Figures Exercise

A car travels from $x=-70 \mathrm{~km}$ to $x=-57 \mathrm{~km}$ in 7 minutes. What is the car's average velocity, in kilometers per minute, recorded to the proper number of significant figures? Use the standard convention for direction.
(a) $\frac{13 \mathrm{~km}}{7 \mathrm{~min}}=1.857 \mathrm{~km} / \mathrm{min}$
(b) $\frac{-13 \mathrm{~km}}{7 \min }=-1.857 \mathrm{~km} / \mathrm{min}$

Significant Figures Exercise

A car travels from $x=-70 \mathrm{~km}$ to $x=-57 \mathrm{~km}$ in 7 minutes. What is the car's average velocity, in kilometers per minute, recorded to the proper number of significant figures? Use the standard convention for direction.
(a) $\frac{13 \mathrm{~km}}{7 \mathrm{~min}}=1.857 \mathrm{~km} / \mathrm{min}$
(b) $\frac{-13 \mathrm{~km}}{7 \min }=-1.857 \mathrm{~km} / \mathrm{min}$
(c) $\frac{-70 \mathrm{~km}}{7 \mathrm{~min}}=-10 \mathrm{~km} / \mathrm{min}$

Significant Figures Exercise

A car travels from $x=-70 \mathrm{~km}$ to $x=-57 \mathrm{~km}$ in 7 minutes. What is the car's average velocity, in kilometers per minute, recorded to the proper number of significant figures? Use the standard convention for direction.
(a) $\frac{13 \mathrm{~km}}{7 \mathrm{~min}}=1.857 \mathrm{~km} / \mathrm{min}$
(b) $\frac{-13 \mathrm{~km}}{7 \min }=-1.857 \mathrm{~km} / \mathrm{min}$
(c) $\frac{-70 \mathrm{~km}}{7 \mathrm{~min}}=-10 \mathrm{~km} / \mathrm{min}$
(d) $\frac{-57 \mathrm{~km}}{7 \min }=-8 \mathrm{~km} / \mathrm{min}$

Significant Figures Exercise

A car travels from $x=-70 \mathrm{~km}$ to $x=-57 \mathrm{~km}$ in 7 minutes. What is the car's average velocity, in kilometers per minute, recorded to the proper number of significant figures? Use the standard convention for direction.
(a) $\frac{13 \mathrm{~km}}{7 \mathrm{~min}}=1.857 \mathrm{~km} / \mathrm{min}$
(b) $\frac{-13 \mathrm{~km}}{7 \min }=-1.857 \mathrm{~km} / \mathrm{min}$
(c) $\frac{-70 \mathrm{~km}}{7 \mathrm{~min}}=-10 \mathrm{~km} / \mathrm{min}$
(d) $\frac{-57 \mathrm{~km}}{7 \min }=-8 \mathrm{~km} / \mathrm{min}$

$$
\text { (e) } \frac{13 \mathrm{~km}}{7 \mathrm{~min}}=2 \mathrm{~km} / \mathrm{min}
$$

Significant Figures Exercise

A car travels from $x=-70 \mathrm{~km}$ to $x=-57 \mathrm{~km}$ in 7 minutes. What is the car's average velocity, in kilometers per minute, recorded to the proper number of significant figures? Use the standard convention for direction.
(a) $\frac{13 \mathrm{~km}}{7 \mathrm{~min}}=1.857 \mathrm{~km} / \mathrm{min}$
(b) $\frac{-13 \mathrm{~km}}{7 \min }=-1.857 \mathrm{~km} / \mathrm{min}$
(c) $\frac{-70 \mathrm{~km}}{7 \mathrm{~min}}=-10 \mathrm{~km} / \mathrm{min}$
(d) $\frac{-57 \mathrm{~km}}{7 \min }=-8 \mathrm{~km} / \mathrm{min}$

$$
\text { (e) } \frac{13 \mathrm{~km}}{7 \mathrm{~min}}=2 \mathrm{~km} / \mathrm{min}
$$

Unit Conversion

We use the fact that when multiplying or dividing physical quantities that their units also multiply and divide to simplify unit conversion.

Unit Conversion

We use the fact that when multiplying or dividing physical quantities that their units also multiply and divide to simplify unit conversion.

Given that $1.00 \mathrm{in}=2.54 \mathrm{~cm}$, which of the following is the correct conversion of $5 \mathrm{~cm} / \mathrm{s}$ into $\mathrm{in} / \mathrm{hr}$?

Unit Conversion

We use the fact that when multiplying or dividing physical quantities that their units also multiply and divide to simplify unit conversion.

Given that $1.00 \mathrm{in}=2.54 \mathrm{~cm}$, which of the following is the correct conversion of $5 \mathrm{~cm} / \mathrm{s}$ into $\mathrm{in} / \mathrm{hr}$?
(a) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=7090 \mathrm{in} / \mathrm{hr}$

Unit Conversion

We use the fact that when multiplying or dividing physical quantities that their units also multiply and divide to simplify unit conversion.

Given that $1.00 \mathrm{in}=2.54 \mathrm{~cm}$, which of the following is the correct conversion of $5 \mathrm{~cm} / \mathrm{s}$ into $\mathrm{in} / \mathrm{hr}$?
(a) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=7090 \mathrm{in} / \mathrm{hr}$
(b) $\frac{5 \mathrm{~cm}}{s} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=45700 \mathrm{in} / \mathrm{hr}$

Unit Conversion

We use the fact that when multiplying or dividing physical quantities that their units also multiply and divide to simplify unit conversion.

Given that $1.00 \mathrm{in}=2.54 \mathrm{~cm}$, which of the following is the correct conversion of $5 \mathrm{~cm} / \mathrm{s}$ into $\mathrm{in} / \mathrm{hr}$?
(a) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=7090 \mathrm{in} / \mathrm{hr}$
(b) $\frac{5 \mathrm{~cm}}{s} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=45700 \mathrm{in} / \mathrm{hr}$
(c) $\frac{5 \mathrm{~cm}}{\mathrm{~s}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~h}}=118 \mathrm{in} / \mathrm{hr}$

Unit Conversion

We use the fact that when multiplying or dividing physical quantities that their units also multiply and divide to simplify unit conversion.

Given that $1.00 \mathrm{in}=2.54 \mathrm{~cm}$, which of the following is the correct conversion of $5 \mathrm{~cm} / \mathrm{s}$ into $\mathrm{in} / \mathrm{hr}$?
(a) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=7090 \mathrm{in} / \mathrm{hr}$
(b) $\frac{5 \mathrm{~cm}}{s} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=45700 \mathrm{in} / \mathrm{hr}$
(c) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~h}}=118 \mathrm{in} / \mathrm{hr}$
(d) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=5.47 \times 10^{-4} \mathrm{in} / \mathrm{hr}$

Unit Conversion

We use the fact that when multiplying or dividing physical quantities that their units also multiply and divide to simplify unit conversion.

Given that $1.00 \mathrm{in}=2.54 \mathrm{~cm}$, which of the following is the correct conversion of $5 \mathrm{~cm} / \mathrm{s}$ into $\mathrm{in} / \mathrm{hr}$?
(a) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=7090 \mathrm{in} / \mathrm{hr}$
(b) $\frac{5 \mathrm{~cm}}{s} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=45700 \mathrm{in} / \mathrm{hr}$
(c) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~h}}=118 \mathrm{in} / \mathrm{hr}$
(d) $\frac{5 \mathrm{~cm}}{\mathrm{~s}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=5.47 \times 10^{-4} \mathrm{in} / \mathrm{hr}$
(e) None of the these

Unit Conversion

We use the fact that when multiplying or dividing physical quantities that their units also multiply and divide to simplify unit conversion.

Given that $1.00 \mathrm{in}=2.54 \mathrm{~cm}$, which of the following is the correct conversion of $5 \mathrm{~cm} / \mathrm{s}$ into $\mathrm{in} / \mathrm{hr}$?
(a) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=7090 \mathrm{in} / \mathrm{hr}$
(b) $\frac{5 \mathrm{~cm}}{\mathrm{~s}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=45700 \mathrm{in} / \mathrm{hr}$
(c) $\frac{5 \mathrm{~cm}}{s} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~h}}=118 \mathrm{in} / \mathrm{hr}$
(d) $\frac{5 \mathrm{~cm}}{\mathrm{~s}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=5.47 \times 10^{-4} \mathrm{in} / \mathrm{hr}$
(e) None of the these

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Position versus time

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Velocity versus time

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Velocity versus time

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Horizontal Motion

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Horizontal Motion

Vertical Motion

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Horizontal Motion

Vertical Motion

Motion Graphs

In addition to motion diagrams, physicists also like to make graphs to describe motion.

Horizontal Motion

Vertical Motion

Uniform Motion Position Graph

Walking to right motion diagram:

Uniform Motion Position Graph

Walking to right motion diagram:

Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:

Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:

Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:

Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:

Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:

Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:

Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:

Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

In uniform motion, the position graph is a straight line

Uniform Motion Position Graph

Walking to right motion diagram:
Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

In uniform motion, the position graph is a straight line

Uniform Motion Position Graph

Walking to right motion diagram:
Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

In uniform motion, the position graph is a straight line

Uniform Motion Position Graph

Walking to right motion diagram:
Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:
Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:
Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

Uniform Motion Position Graph

Walking to right motion diagram:
Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.
$x_{\uparrow} \quad$ Position versus time

In uniform motion, the position graph is a straight line

$$
v_{x}=\frac{\Delta x}{\Delta t}
$$

Uniform Motion Position Graph

Walking to right motion diagram:
Equal spacing between dots because with constant velocity the object travels the same distance during equal elapsed times.

In uniform motion, the position graph is a straight line
$x_{\uparrow} \quad$ Position versus time

$$
\xrightarrow[t_{f}]{\longrightarrow} t \quad x_{f}-x_{i}=\Delta x
$$

Velocity is the slope of the position versus time graph

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.
Slope: $m=\frac{\text { rise }}{\text { run }}=\frac{1}{1}=1$

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.
Slope: $m=\frac{\text { rise }}{\text { run }}=\frac{1}{1}=1$

In Physics, the slope of line is the ratio of the change in two physical quantities.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.
Slope: $m=\frac{\text { rise }}{\text { run }}=\frac{1}{1}=1$

In Physics, the slope of line is the ratio of the change in two physical quantities.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.
Slope: $m=\frac{\text { rise }}{\text { run }}=\frac{1}{1}=1$

In Physics, the slope of line is the ratio of the change in two physical quantities.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.
Slope: $m=\frac{\text { rise }}{\text { run }}=\frac{1}{1}=1$

In Physics, the slope of line is the ratio of the change in two physical quantities.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.
Slope: $m=\frac{\text { rise }}{\text { run }}=\frac{1}{1}=1$

In Physics, the slope of line is the ratio of the change in two physical quantities.

Math and Physics Slopes

In Physics, slopes have units and don't necessarily correspond to the steepness of the line on the drawing.

In math, the slope of line tells you how "steep" a line is.
Slope: $m=\frac{\text { rise }}{\text { run }}=\frac{1}{1}=1$

In Physics, the slope of line is the ratio of the change in two physical quantities.
Slope = Velocity: $v_{x}=\frac{\Delta x}{\Delta t}=\frac{15 \mathrm{~m}}{1 \mathrm{~s}}=15 \mathrm{~m} / \mathrm{s}$

Position-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct position-versus-time graph?

Position-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct position-versus-time graph?

Position-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct position-versus-time graph?

Position-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct position-versus-time graph?

Position-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct position-versus-time graph?

Position-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct position-versus-time graph?

Position-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct position-versus-time graph?

Position-Graph Followup

Position-Graph Followup

$$
\begin{aligned}
& \text { (a) } \\
& \text { Man walks to the right with } \\
& \text { constant speed the whole time. }
\end{aligned}
$$

Position-Graph Followup

(c)

Position-Graph Followup

Position-Graph Followup

Position-Graph Followup

Position-Graph Followup

$\left.$	(a)	(c)
Man walks to the right with		
constant speed the whole time.		
:---		
origin, magically appears to left		
of orgin, stands there.	\right\rvert\,	

Position-Graph Followup

(a)

Man walks to the right with constant speed the whole time.
(d)

Man goes to the right with constant speed. Man turns around. Man goes to the left with faster speed and crosses origin.
(c)

Man stands to the right of origin, magically appears to left of orgin, stands there.
(e)

Man starts to the right of origin. Walks to left with constant speed. Passes origin. Stands in place.

Position-Graph Followup

(a)
Man walks to the right with

constant speed the whole time. | Man stands to the right of |
| :--- |
| origin, magically appears to left |
| of orgin, stands there. |

Position-Graph Followup

| (a) |
| :--- | :--- | :--- |

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion.

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion. Uniform Motion - Constant velocity motion.

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion. Uniform Motion - Constant velocity motion.

Walking to right motion diagram:

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion. Uniform Motion - Constant velocity motion.

Walking to right motion diagram:

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion. Uniform Motion - Constant velocity motion.

Walking to right motion diagram:

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion. Uniform Motion - Constant velocity motion.

Walking to right motion diagram:

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion. Uniform Motion - Constant velocity motion.

Walking to right motion diagram:

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion. Uniform Motion - Constant velocity motion.

Walking to right motion diagram:

Uniform-Motion-Velocity Graph

The simplest graph is the velocity versus time for uniform motion. Uniform Motion - Constant velocity motion.

Walking to right motion diagram:

Velocity-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct velocity-versus-time graph?

Motion Diagram $: \longleftarrow \bullet \longleftrightarrow \bullet \bullet_{\bullet \bullet \bullet}^{\bullet \bullet}>$ Same Point

Velocity-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct velocity-versus-time graph?

Motion Diagram $: \longrightarrow \bullet \longleftarrow \bullet \longleftarrow \bullet>$ Same Point

Velocity-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct velocity-versus-time graph?

Motion Diagram $: \longleftarrow \bullet \longleftrightarrow \bullet \longleftrightarrow \bullet>$ Same Point

Velocity-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct velocity-versus-time graph?

Motion Diagram $: \longrightarrow \bullet \longleftrightarrow \bullet \longrightarrow \bullet>$ Same Point

Velocity-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct velocity-versus-time graph?

Motion Diagram $: \longleftarrow \bullet \bullet_{\bullet \bullet \bullet \bullet \bullet}^{\bullet}>$ Same Point

Velocity-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct velocity-versus-time graph?

Motion Diagram $: \longleftarrow \bullet \longleftrightarrow \bullet \longleftarrow \bullet>$ Same Point

Velocity-Graph Exercise

A man walks some distance to the right with constant speed, immediately turns around and walks back to his starting point with the same speed. Which of the following is the correct velocity-versus-time graph?

Motion Diagram $: \longleftarrow \bullet \bullet_{\bullet \bullet \bullet \bullet \bullet}^{\bullet \bullet}>$ Same Point

Velocity-Graph Followup

Velocity-Graph Followup

Man walks to the right with constant speed the whole time

Velocity-Graph Followup

Man walks to the right with constant speed the whole time

Velocity-Graph Followup

Velocity-Graph Followup

Man walks to the right with constant speed the whole time

Man speeds up then the man slows down. Going to the right the whole time.

Velocity-Graph Followup

Man walks to the right with constant speed the whole time

Man speeds up then the man slows down. Going to the right the whole time.

Man goes to the right with constant speed. Man immediately turns around. Man goes to the left with faster speed than before.

Velocity-Graph Followup II

Velocity-Graph Followup II

Man walks to the right but slowing down. Eventually he turns around. Goes to the left with increasing speed and then maintains constant speed to the left.

Velocity-Graph Followup II

Man walks to the right but slowing down. Eventually he turns around. Goes to the left with increasing speed and then maintains constant speed to the left.

Velocity-Graph Followup II

Man walks to the right but slowing down. Eventually he turns around. Goes to the left with increasing speed and then maintains constant speed to the left.

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

Works for Uniform Motion:

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

Works for Uniform Motion: | v_{x} | |
| :--- | :--- |
| | |
| | |

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

Works for Uniform Motion:	
$v_{x}=\frac{\Delta x}{\Delta t} \Rightarrow \Delta x=v_{x}(\Delta t)$	

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

v_{x}			
Works for Uniform Motion:			
$v_{x}=\frac{\Delta x}{\Delta t} \Rightarrow \Delta x=v_{x}(\Delta t)$			

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

	v_{x}	
Works for Uniform Motion:		
$v_{x}=\frac{\Delta x}{\Delta t} \Rightarrow \Delta x=v_{x}(\Delta t)$		

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

Works for Uniform Motion:
$v_{x}=\frac{v_{x}}{\Delta t} \Rightarrow \Delta x=v_{x}(\Delta t)$

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

Works for Uniform Motion:
$v_{x}=\frac{v_{x}}{\Delta t} \Rightarrow \Delta x=v_{x}(\Delta t)$

Also works here:

Position from velocity

To find position from velocity, we use the fact that displacement is the area under the velocity-versus-time graph.

Works for Uniform Motion:
$v_{x}=\frac{v_{x}}{\Delta t} \Rightarrow \Delta x=v_{x}(\Delta t)$

Also works here:

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.
Average Velocity:

$$
v_{a v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

tells use how fast and in what direction an object went on average during the elapsed time Δt.

Instantaneous velocity

When motion is no longer uniform, velocity changes with time.
Average Velocity:

$$
v_{a v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

tells use how fast and in what direction an object went on average during the elapsed time Δt.

Instantaneous velocity, v_{x} - How fast and in what direction for one instant of time t.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

To find the velocity at one time t we use the fact that all curves look straight when magnified

Changing Velocity

When velocity is changing, position versus time is now a curve. Instantaneous velocity is still the slope of the graph.

Note: To make this exact we have to make the magnification infnite. In calculus, this is called taking a derivative.

Changing Velocity II

At different points on the curve, the slopes are different (and therefore so are the velocities).

Changing Velocity II

At different points on the curve, the slopes are different (and therefore so are the velocities).

Changing Velocity II

At different points on the curve, the slopes are different (and therefore so are the velocities).

Changing Velocity II

At different points on the curve, the slopes are different (and therefore so are the velocities).

Changing Velocity II

At different points on the curve, the slopes are different (and therefore so are the velocities).

Changing Velocity II

At different points on the curve, the slopes are different (and therefore so are the velocities).

Slope $=v_{x}$ at t_{1}

Changing Velocity II

At different points on the curve, the slopes are different (and therefore so are the velocities).

Slope $=v_{x}$ at t_{1}

Changing Velocity II

At different points on the curve, the slopes are different (and therefore so are the velocities).

