June 3, Week 1

Physics 151, Dr. Mark Morgan-Tracy

Today: Chapter 1, Position, Displacement, and Velocity

Please Register your Clicker.

Homework Assignment \#1 - Available on class webpage, Due this Friday, June 6.

Motion

Mechanics - Study of how and why objects move.

Motion

Mechanics - Study of how and why objects move.

Kinematics - Motion without regard to how it is caused.

Motion

Mechanics - Study of how and why objects move.

Kinematics - Motion without regard to how it is caused.
One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.

Motion

Mechanics - Study of how and why objects move.

Kinematics - Motion without regard to how it is caused.
One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.

To describe motion completely, we need to know:

Motion

Mechanics - Study of how and why objects move.

Kinematics - Motion without regard to how it is caused.
One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.

To describe motion completely, we need to know:
Where the object is located at every time = Position

Motion

Mechanics - Study of how and why objects move.

Kinematics - Motion without regard to how it is caused.
One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.

To describe motion completely, we need to know:
Where the object is located at every time = Position
How fast and in what direction the object is going at every time $=$ Velocity

Motion

Mechanics - Study of how and why objects move.

Kinematics - Motion without regard to how it is caused.
One-Dimensional Motion - Straight-line motion. The object can only go left/right or up/down.

To describe motion completely, we need to know:
Where the object is located at every time = Position
How fast and in what direction the object is going at every time = Velocity

Whether the object is speeding up or slowing down at every time $=$ Acceleration

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Particle Model - For now, it suffices to treat moving objects as particles \Rightarrow little dots with a single value of position.

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Particle Model - For now, it suffices to treat moving objects as particles \Rightarrow little dots with a single value of position.

Example: Draw the motion diagram for a car moving to the left with constant speed.

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Particle Model - For now, it suffices to treat moving objects as particles \Rightarrow little dots with a single value of position.

Example: Draw the motion diagram for a car moving to the left with constant speed.

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Particle Model - For now, it suffices to treat moving objects as particles \Rightarrow little dots with a single value of position.

Example: Draw the motion diagram for a car moving to the left with constant speed.

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Particle Model - For now, it suffices to treat moving objects as particles \Rightarrow little dots with a single value of position.

Example: Draw the motion diagram for a car moving to the left with constant speed.

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Particle Model - For now, it suffices to treat moving objects as particles \Rightarrow little dots with a single value of position.

Example: Draw the motion diagram for a car moving to the left with constant speed.

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Particle Model - For now, it suffices to treat moving objects as particles \Rightarrow little dots with a single value of position.

Example: Draw the motion diagram for a car moving to the left with constant speed.
$\begin{array}{llll}- & \text { - } & \text { - } & \text { - } \\ 3 & 2 & 1 & 0\end{array}$

Motion Diagrams

Motion Diagrams - Picture of the object's position at equally spaced times.

Particle Model - For now, it suffices to treat moving objects as particles \Rightarrow little dots with a single value of position.

Example: Draw the motion diagram for a car moving to the left with constant speed.

-	-	-	Later we'll include arrows	
3	2	1	0	to indicate direction of motion

Position

Position = How far and what direction from an origin.

Position

Position = How far and what direction from an origin.
What You'll See:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

For 1D Motion, direction is indicated by giving positive or negative values for physics quantities.

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

For 1D Motion, direction is indicated by giving positive or negative values for physics quantities.

Position has two possible directions:

Usual Convention:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

For 1D Motion, direction is indicated by giving positive or negative values for physics quantities.

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

For 1D Motion, direction is indicated by giving positive or negative values for physics quantities.

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

For 1D Motion, direction is indicated by giving positive or negative values for physics quantities.

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

For 1D Motion, direction is indicated by giving positive or negative values for physics quantities.

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

For 1D Motion, direction is indicated by giving positive or negative values for physics quantities.

Position has two possible directions:

Position

Position = How far and what direction from an origin.
What You'll See:

What What We Mean:

For 1D Motion, direction is indicated by giving positive or negative values for physics quantities.

Position has two possible directions:

Displacement

Moving objects change their position, so we introduce displacement.

Displacement

Moving objects change their position, so we introduce displacement.

Displacement $=$ change in position $=\Delta x($ Delta $x)$

Displacement

Moving objects change their position, so we introduce displacement.

Displacement $=$ change in position $=\Delta x($ Delta $x)$
Initial Position $=x_{i}$,

Displacement

Moving objects change their position, so we introduce displacement.

Displacement $=$ change in position $=\Delta x($ Delta $x)$
Initial Position $=x_{i}$, Final Position $=x_{f}$

Displacement

Moving objects change their position, so we introduce displacement.

Displacement $=$ change in position $=\Delta x($ Delta $x)$
Initial Position $=x_{i}$, Final Position $=x_{f}$

Displacement is how far and direction traveled from initial to final:

Displacement

Moving objects change their position, so we introduce displacement.

Displacement $=$ change in position $=\Delta x($ Delta $x)$
Initial Position $=x_{i}$, Final Position $=x_{f}$

Displacement is how far and direction traveled from initial to final:

Displacement

Moving objects change their position, so we introduce displacement.

Displacement $=$ change in position $=\Delta x($ Delta $x)$
Initial Position $=x_{i}$, Final Position $=x_{f}$
Displacement is how far and direction traveled from initial to final:

x_{f}

Displacement

Moving objects change their position, so we introduce displacement.

Displacement $=$ change in position $=\Delta x($ Delta $x)$
Initial Position $=x_{i}$, Final Position $=x_{f}$

Displacement is how far and direction traveled from initial to final:

x_{f}

$$
\Delta x=x_{f}-x_{i}
$$

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.
(a) 39 cm

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.
(a) 39 cm
(b) -39 cm

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.
(a) 39 cm
(b) -39 cm
(c) 4.35 m

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.
(a) 39 cm
(b) -39 cm
(c) 4.35 m
(d) $-4.35 m$

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.
(a) 39 cm
(b) -39 cm
(c) 4.35 m
(d) $-4.35 m$

$$
\text { (e) }-4 m
$$

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.
(a) 39 cm
(b) -39 cm
(c) 4.35 m

$$
\text { (d) }-4.35 \mathrm{~m}
$$

(e) $-4 m$

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

$$
\text { (d) }-4.35 \mathrm{~m}
$$

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Displacement Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. If the eagle dives straight down and grabs the fish, what the eagle's displacement? Use the typical convention that up is positive.

Distance

Distance, $d=$ always positive number which gives how far an object has traveled.

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.
(a) $\Delta x=0, d=8.7 \mathrm{~m}$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\begin{array}{ll}
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m} & \text { (b) } \Delta x=0, d=4.35 \mathrm{~m}
\end{array}
$$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\begin{array}{ll}
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m} & \text { (b) } \Delta x=0, d=4.35 \mathrm{~m}
\end{array}
$$

(c) $\Delta x=8.7 m, d=8.7 m$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\begin{array}{ll}
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m} & \text { (b) } \Delta x=0, d=4.35 \mathrm{~m} \\
\text { (c) } \Delta x=8.7 \mathrm{~m}, d=8.7 \mathrm{~m} & \text { (d) } \Delta x=8.7 \mathrm{~m}, d=0
\end{array}
$$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\begin{array}{ll}
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m} & \text { (b) } \Delta x=0, d=4.35 \mathrm{~m} \\
\text { (c) } \Delta x=8.7 \mathrm{~m}, d=8.7 \mathrm{~m} & \text { (d) } \Delta x=8.7 \mathrm{~m}, d=0
\end{array}
$$

$$
\text { (e) } \Delta x=0, d=0
$$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\begin{array}{ll}
\hline \text { (a) } \Delta x=0, d=8.7 \mathrm{~m} & \text { (b) } \Delta x=0, d=4.35 \mathrm{~m} \\
\text { (c) } \Delta x=8.7 \mathrm{~m}, d=8.7 \mathrm{~m} & \text { (d) } \Delta x=8.7 \mathrm{~m}, d=0
\end{array}
$$

$$
\text { (e) } \Delta x=0, d=0
$$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m}
$$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m}
$$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m}
$$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m}
$$

Distance Exercise

An eagle is flying 4 m above a lake when it spies a fish that is 35 cm below the surface. The eagle dives straight down, grabs the fish, and then flies straight back up to where it started. For the entire trip, what the eagle's displacement Δx and distance d traveled? Use the typical convention that up is positive.

$$
\text { (a) } \Delta x=0, d=8.7 \mathrm{~m}
$$

Total displacement doesn't depend on what happens during the motion. Distance does.

Velocity

Speed - How fast on object is going

Velocity

Speed - How fast on object is going
For an object in uniform motion \Rightarrow not speeding up or slowing down:

Velocity

Speed - How fast on object is going
For an object in uniform motion \Rightarrow not speeding up or slowing down:

$$
\text { speed }=\frac{\text { distance }}{\text { elapsedtime }}
$$

Velocity

Speed - How fast on object is going
For an object in uniform motion \Rightarrow not speeding up or slowing down:

$$
\text { speed }=\frac{\text { distance }}{\text { elapsed time }}=\frac{d}{\Delta t} \quad \Delta t=t_{f}-t_{i}
$$

Velocity

Speed - How fast on object is going
For an object in uniform motion \Rightarrow not speeding up or slowing down:

$$
\text { speed }=\frac{\text { distance }}{\text { elapsed time }}=\frac{d}{\Delta t} \quad \Delta t=t_{f}-t_{i}
$$

Units: When we multiply or divide units, we make a new compound unit. Here, we can use any distance and time combination. Typically, we'll use $m / s=$ meters per second.

Velocity

Speed - How fast on object is going
For an object in uniform motion \Rightarrow not speeding up or slowing down:

$$
\text { speed }=\frac{\text { distance }}{\text { elapsedtime }}=\frac{d}{\Delta t} \quad \Delta t=t_{f}-t_{i}
$$

Units: When we multiply or divide units, we make a new compound unit. Here, we can use any distance and time combination. Typically, we'll use $m / s=$ meters per second.

Velocity - How fast and Direction of Motion

Velocity

Speed - How fast on object is going
For an object in uniform motion \Rightarrow not speeding up or slowing down:

$$
\text { speed }=\frac{\text { distance }}{\text { elapsedtime }}=\frac{d}{\Delta t} \quad \Delta t=t_{f}-t_{i}
$$

Units: When we multiply or divide units, we make a new compound unit. Here, we can use any distance and time combination. Typically, we'll use $m / s=$ meters per second.

Velocity - How fast and Direction of Motion
To include information about direction, we use displacement instead of distance.

Velocity

Speed - How fast on object is going
For an object in uniform motion \Rightarrow not speeding up or slowing down:

$$
\text { speed }=\frac{\text { distance }}{\text { elapsedtime }}=\frac{d}{\Delta t} \quad \Delta t=t_{f}-t_{i}
$$

Units: When we multiply or divide units, we make a new compound unit. Here, we can use any distance and time combination. Typically, we'll use $m / s=$ meters per second.

Velocity - How fast and Direction of Motion
To include information about direction, we use displacement instead of distance.

For an object in uniform motion: $v=\frac{\text { displacement }}{\text { elapsedtime }}=\frac{\Delta x}{\Delta t}$

Velocity Exercise I

Which of the following cars would have the largest velocity?

Velocity Exercise I

Which of the following cars would have the largest velocity?
(a) A car goes 100 m in 4 s .

Velocity Exercise I

Which of the following cars would have the largest velocity?
(a) A car goes 100 m in 4 s .
(b) A car goes 100 m in 3 s .

Velocity Exercise I

Which of the following cars would have the largest velocity?
(a) A car goes 100 m in 4 s .
(b) A car goes 100 m in 3 s .
(c) A car goes $100 m$ in $2 s$.

Velocity Exercise I

Which of the following cars would have the largest velocity?
(a) A car goes 100 m in 4 s .
(b) A car goes 100 m in 3 s .
(c) A car goes 100 m in 2 s .
(d) A car goes 100 m in 1 s .

Velocity Exercise I

Which of the following cars would have the largest velocity?
(a) A car goes 100 m in 4 s .
(b) A car goes 100 m in 3 s .
(c) A car goes 100 m in 2 s .
(d) A car goes 100 m in 1 s .
(e) All of these cars have the same velocity.

Velocity Exercise I

Which of the following cars would have the largest velocity?
(a) A car goes 100 m in 4 s .
(b) A car goes 100 m in 3 s .
(c) A car goes 100 m in 2 s .
(d) A car goes 100 m in 1 s .
(e) All of these cars have the same velocity.

Velocity Exercise I

Which of the following cars would have the largest velocity?
(d) A car goes 100 m in 1 s .
$v=\frac{\Delta x}{\Delta t} \Rightarrow$ the smaller the time for a given Δx, the larger the velocity.

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?
(a) $20 \times 100=2000$

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?
(a) $20 \times 100=2000$
(b) $\frac{20}{100}=0.2$

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?
(a) $20 \times 100=2000$
(b) $\frac{20}{100}=0.2$
(c) $\frac{100}{20}=5$

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?
(a) $20 \times 100=2000$
(b) $\frac{20}{100}=0.2$
(c) $\frac{100}{20}=5$
(d) $20+100=120$

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?
(a) $20 \times 100=2000$
(b) $\frac{20}{100}=0.2$
(c) $\frac{100}{20}=5$
(d) $20+100=120$
(e) There is not enough information to determine

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?
(a) $20 \times 100=2000$
(b) $\frac{20}{100}=0.2$

$$
v=\frac{\Delta x}{\Delta t}
$$

(c) $\frac{100}{20}=5$
(d) $20+100=120$
(e) There is not enough information to determine

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?
(a) $20 \times 100=2000$
(b) $\frac{20}{100}=0.2$

$$
v=\frac{\Delta x}{\Delta t} \Rightarrow \Delta t=\frac{\Delta x}{v}
$$

(c) $\frac{100}{20}=5$
(d) $20+100=120$
(e) There is not enough information to determine

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?
(a) $20 \times 100=2000$
(b) $\frac{20}{100}=0.2$
(c) $\frac{100}{20}=5$

$$
v=\frac{\Delta x}{\Delta t} \Rightarrow \Delta t=\frac{\Delta x}{v}
$$

(d) $20+100=120$
(e) There is not enough information to determine

Velocity Exercise II

How long does it take a car traveling with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ to go 100 m ?

$$
v=\frac{\Delta x}{\Delta t} \Rightarrow \Delta t=\frac{\Delta x}{v}
$$

(c) $\frac{100}{20}=5$

Let units help you! $\frac{100 \mathrm{~m}}{20 \mathrm{~m} / \mathrm{s}}=5(\mathrm{~m})\left(\frac{\mathrm{s}}{\mathrm{m}}\right)=5 \mathrm{~s}$

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

10

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

Car going to the left, speeding up. Before:

\bullet	\bullet	\bullet	\bullet
3	2	1	0

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

Car going to the left, speeding up. Before:
$\begin{array}{llll}\bullet & \bullet & \bullet & \bullet \\ 3 & 2 & 1 & 0\end{array}$

Now:

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

Car going to the left, speeding up. Before:

\bullet	\bullet	\bullet	\bullet
3	2	1	0

Now:
(We can drop labels since they're not needed now)

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

Car going to the left, speeding up. Before:

Now:
(We can drop labels since they're not needed now)

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

Car going to the left, speeding up. Before:

Now:
(We can drop labels since they're not needed now)

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

Car going to the left, speeding up. Before:

\bullet	\bullet	\bullet	\bullet
3	2	1	0

Now:
(We can drop labels since they're not needed now)

Motion Diagrams II

On straight-line motion diagrams, connecting the dots with arrows indicates the velocity. (In curved motion, connecting the dots indicates the average velocity.)

Car going to the left, speeding up. Before:

\bullet	\bullet	\bullet	\bullet
3	2	1	0

Now:
(We can drop labels since they're not needed now)

Increasing arrow length \Rightarrow speeding up

S. I. Units

To compare physical quantities, everyone must use the same system of units.

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)
- Unit of mass

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)
- Unit of mass = kilogram (kg)

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)
- Unit of mass $=$ kilogram $(k g)$
- Unit of time

S. I. Units

To compare physical quantities, everyone must use the same system of units.

- Physics uses the S. I. system (Système International D'unités).
- There are three fundamental units/measurements in S.I.
- Unit of length $=$ meter (m)
- Unit of mass $=$ kilogram $(k g)$
- Unit of time $=$ second (s)

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the U. S. customary.

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the U. S. customary.

- Unit of length

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the U. S. customary.

- Unit of length $=$ foot $(f t)$

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the U. S. customary.

- Unit of length $=$ foot $(f t)$
- Unit of weight

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the U. S. customary.

- Unit of length $=$ foot $(f t)$
- Unit of weight $=$ Pound $(l b)$

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the U. S. customary.

- Unit of length $=$ foot $(f t)$
- Unit of weight $=$ Pound $(l b)$
- Unit of time

U. S. Customary Units

In the United States, we use the U. S. customary system or British engineering system of units in everyday life.

There are also three fundamental units in the U. S. customary.

- Unit of length $=$ foot $(f t)$
- Unit of weight $=$ Pound $(l b)$
- Unit of time $=$ second (s)

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- mili $(m)=0.001=10^{-3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- \quad mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$
- mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$
- nano $(n)=10^{-9}$
- mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$

S. I. Prefixes

To make more convenient units, the S. I. system has a uniform system of prefixes that act as multipliers of powers of ten.

- centi $(c)=0.01=10^{-2}$
- kilo $(k)=1000=10^{3}$
- mega $(M)=10^{6}$
- $\operatorname{giga}(G)=10^{9}$
- tera $(T)=10^{12}$
- \quad mili $(m)=0.001=10^{-3}$
- micro $(\mu)=10^{-6}$
- nano $(n)=10^{-9}$
- pico $(p)=10^{-12}$

