Physics 151 Reading Assignment for June 26

 SECTIONS 6.1, 3.8, AND 6.2

 SECTIONS 6.1, 3.8, AND 6.2}

Please notice that this file is two pages long.

6.1 Uniform Circular Motion

- Uniform circular motion $=$ going around a circle with constant speed.
- To locate an object going around a circle, it is easiest to give the angle $=$ angular position.
- For various reasons, we introduce two more angle units here: radians and revolutions.
- When angle is in radians, arclength $s=r \theta$, which leads to $360^{\circ}=2 \pi \mathrm{rad}$.
- 1 rev $=$ once around a circle, so 1 rev $=360^{\circ}=2 \pi \mathrm{rad}$.
- Angular displacement is simply $\Delta \theta=\theta_{f}-\theta_{i}$.
- Angular velocity $\omega=\frac{\Delta \theta}{\Delta t}$.
- The official unit of ω is $\mathrm{rad} / \mathrm{s}$ though in the U.S. we like the rev $/ \mathrm{min}=R P M$.
- Angular-position and Angular-velocity graphs = probably won't have time to do this in class, so read on your own.

3.8 Motion in Two Dimensions: Circular Motion

- Many of the quantities we'll need in chapter 6 were introduced here.
- Period, T - Time for one revolution.
- Frequency, f - How frequently the object goes around the circle. Period and frequency are inversely related.
- Centripetal Acceleration - Acceleration towards the center of the circle necessary for circular motion.

6.2 Speed, Velocity, and Acceleration in Uniform Circular Motion

- We now have to distinguish between angular velocity ω and linear velocity v. (Calling v the linear velocity isn't the best name, but nobody's come up with anything better!)
- $v=\omega r$ gives the correct answer only when ω is in $\mathrm{rad} / \mathrm{s}$ units.
- Velocity and Acceleration - this is why I had you go back and read section 3.8. It gives the derivation of the centripetal acceleration, $a=\frac{v^{2}}{r}=\omega^{2} r$.

