Physics 151 Reading Assignment for June 11 SECTIONS 3.1 TO 3.3

Please notice that this file is two pages long.

3.1 - Using vectors

- Vector has magnitude and direction. The magnitude of a vector is the positive number associated with the vector and gives the "amount".
- Two vectors are equal only if the have the same magnitude and direction
- Vector addition - finding the net result of two or more vectors that take their direction into account
- Graphical addition - putting two vectors tip-to-tail
- Multiplying by a scalar changes the magnitude but not the direction of a vector. One exception - negative scalars also flip the direction by 180°.
- Vector Subtraction - Either follow the procedure in the Tactics Box or simply learn that $\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$ points from $\overrightarrow{\mathbf{B}}$ to $\overrightarrow{\mathbf{A}}$

3.2 - Using Vectors on Motion Diagrams

- Again the textbook is not being as careful as it should. $\overrightarrow{\mathbf{v}}=\frac{\overrightarrow{\mathrm{d}}}{\Delta t}=\frac{\overrightarrow{d \mathbf{r}}}{\Delta t}$ should be labeled as the average velocity
- The Average Velocity vector points in the direction of the displacement
- The acceleration definition, $\overrightarrow{\mathbf{a}}=\frac{\Delta \overrightarrow{\mathrm{v}}}{\Delta t}$, is fine if you're doing constant acceleration motion
- An object is accelerating if it changes speed or direction
- Notice Example 3. 3, this will come back to haunt us

3.3 - Coordinate Systems and vector Components

- Components, A_{x} and A_{y} - pieces of a vector parallel to the two axes. Very important!
- We use trigonometry to get the numerical values of each component. Page 76 contains all the trig. needed for this class
- Using components to do vector addition - essential.

