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3 The Eqmvalence Pr1nc1p1e and an Electrlc Charge ’
in a Grav1tatmnal Fleld A S S = ‘
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It is shown that there is no violation of the strong principle of equivalence
in the case of an electric charge either falling freely or supported in a
static uniform gravitational field. For a freely falling charge, the global
electromagnetic field distribution at any instant is found to be the same
as that of a charge which is moving uniformiy with respect to an inertial
frame with a velocity equal to the instantaneous veiocmy of the freely
- falling charge. In the case of a charge supported in the gravitational
P . - field, the total electromagnetic field energy, as measured by freely falling
‘ ’ _ observers instantaneously at rest with respect to the charge, is shown to ' : : ‘ o
" be equal to the Coulomb field energy of a charge permanently stationary :
in an inertial frame. ‘The conclusion here, that in neither of the two
© cases does the charge emit electromagnetic radiation, is mdependent of
. our choice of the observer’s frame of reference.

1. INTRODUCTION

. 'The strong pr1nc1ple of equlva.lence appea.rs to be vxolated in the case of a L
free fall of an electric charge in 2 static uniform grawtatmnal field. As seen
by an observer stationary in the grawtatzonal field, a. freely falling charge is
'accelerated “downwards” and should radiate at’a rate proportional to the
square of the acceleration due to grav1ty, a.ccordmg ‘to Larmor’s formula
-_for radiation from the classmal eiectromagnetlc theory. (see e.g. Ref 1,
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p.658, Ref. 8, p.37}. On the other hand such a charge is stationary with
respect to an observer also falling freely in the same uniform gravitational
field. From the strong principle of equivalence a freely falling observer is
in an inertial frame of reference and according to the classical electromag-
netic theory such an inertial observer should see no radiation emitted by a
charge stationary in his/her frame. Since the electromagnetic radiation, as
commonly understood, cannot be eliminated by a change of frame of ref-
erence (radiation could cause some physical effects which should be visible
to all observers; photons may get Doppler-boosted or even red-shifted but
not eliminated altogether, etc.), an inference of radiation from a charge
should not depend upon our choice of the observer. Thus the strong prin-
ciple of equivalence and the classical electromagnetic theory may appear
to be incompatible in this case. An equally paradoxical case appears to be
that of a charge stationary (“supported”) in the static gravitational field.
Such a charge is ever at rest with respect to s similarly supported observer.
Everything is static and there are no temporal changes in the charge or
in its fields, and consequently no electromagnetic radiation should be seen
leaving the charge. But according to a freely falling inertial observer such
a charge is accelerated upwards and should radiate continuously. Based
.on these paradoxical results, doubts have sometimes been raised about the
universel validity of the strong principle of equivalence (see e.g. Refs. 2,3).
Both above probiems, at their face values, may appear linked to the
question of whether or not does a uniformly accelerated charge radiate.
After Pauli first expressed doubts about the occurrence of radiation from
a uniformly accelerated charge (Ref. 4, p.92), there have been many at-
tempts in the literature to counter his arguments {see Refs. 2,3,5-7, Ref. 8,
p-37; also see Ref. 9, p.367, for a review and for other references on the
related works). Here it is important to note that in spite of the apparent
similarity, the case of a freely falling charge is quite different in its nature
from that of a charge uniformily accelerated with respect to an inertial
frame. While in the former case there is an inertial frame available in
which the charge remains at rest, no such inertial frame exists in the latter
case. Therefore one should be able to resolve the two cases with rather
independent arguments.

2, THE CASE OF A HWHHHQ‘ FALLING CHARGE

The results derived in classical electromagnetism are valid strictly
only for observers stationed in inertial frames of reference. Therefore the
conclusions of an observer in the freely falling frame (an inertial frame)
should, in general, be correct and there should be no electromagnetic radi-
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ation from a freely falling charge. But the main problem is how to reconcile
this result with the one expected by an observer stationary in the gravita-
tional field. For that we need to look more carefully at the exact findings
of such an observer. From the theory of relativity, ail forms of energy
(including that of the electromagnetic fields) have an associated inertial
mass and which, by the principle of equivalence, will fall in a gravitational
field in the same way as any other matter. This has been amply tested by
the bending of light (“fall” of photons) in the gravitation field of the sun
{see Ref. 10). : Now even the electric field of a charge has a well-defined
energy density and hence a mass density, and there is no reason why this

- field also should not be considetred to. “fall” along with the charge (after all

from the principle of equivalence, everything falls in a gravitational field).
This can be also seen from the fact that in the case of a uniform gravita-
tional field, the space-time coordinate transformation between the freely
falling inertial frame atd the supported frame is identical for all events
that are simultaneous in a horizontal plane (i.e., in a plane perpendicular
to the direction of fall). Thus an observer stationary in & static, uniform
gravitational field will find that, as a charged particle falls, so does the
bundle of electric field lines alongside it, for field points af all distances in
the horizontal plane containing the charge. .

It still remains to be seen if some distortion in eléctric field lines
may occur because of any differential motion between neighbouring freely-
falling horizontal planes, as seen by observers supported in the gravita-
tional field. For that purpose it seems necessary to be more specific about
the meaning of a static uniform gravitational field. As is well known, an
ideal homogeneous gravitational field, where the gravitational acceleration
of objects just released from rest is the same everywhere, cannot have 2
static (time-independent} metric. The only non-trivial metric for a static
gravitational field with a zero Riemann curvature (implying no geodesic
deviation for freely falling objects) is given by [7,11,12),

w.k.m
%nu t@% %f%miﬁimu. E
Here the acceleration due to gravity is along the —X axis. In these coordi-
nates, a standard clock stationary at X, during a coordinate time interval
dT’, measures an interval of proper time (“local” time; Ref. 11) go XdT'/c?.
Moreover the acceleration due to gravity g for an:object just released from
rest at a point X is equal to ¢*/X in such a field. Thus the arbitrary
conistant go in eq. (1) represents the gravitational acceleration at a point
Xo = ¢?/go, where the time intervals measured on a standard clock are
equal to those of the coordinate time. :
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The motion of a freely falling object in the above gravitational field
has been discussed in detail in the literature (see e.g. Ref. 11) and we should
only highlight some interesting features of such a motion that are relevant
for the discussion here. It turns out that the motion of a freely falling
particle (assuming it to be momentarily at rest at X; at time T = 0) in
these coordinates is described r%

1dX % goT
XTI nm.nwA — )
which gives
X,
X = oo/ @

It should be noted that ¥ = cosh(goT/c) is the Lorentz factor corre-
sponding to the “local” velocity, 8 = —tanh (goT'/c), of the falling particle
(measured in terms of the local standard-clock rate at X). By applying
eq. (2) to a set of such freely falling objects, which were momentarily at
rest at different X;'s at T = 0, we see that the mutual separation be-
tween any pair of objects at some later time T would be less by a factor
cosh (goT/c) as compared to their separation at time T = 0. Therefore,
as seen by observers supported in the above gravitational field, all spatial
dimensions of a freely falling frame appear contracted along the direction
of free fall by the Lorentz factor cosh (goT/c) at time T. This can be vi-
sualized in another way. The above “uniform” gravitational field can be
simulated (Ref. 11, Ref. 13, p.49) by a uniform {in time) proper accelera-
tion of a set of observers, where the acceleration of an observer at X in an
inertial frame that is a common instantaneous rest frame for all acceler-
ated observers, is-equal to ¢2/X. For this particular set of observers, one
such instantaneous, spatially, “coincident” inertial frame is always avail-
‘able. From the clock and length hypotheses [13], all momentarily space-
time measurements by the accelerated observers will exactly match with
those made in their instantaneously coincident inertial rest frame. Thus
not only will the accelerated observers measure the “local” velocity of the
initial inertial frame (i.e. the freely—falling frame, which at 7' = 0 was
the coincident inertial frame in the simulated gravitation field) to be the
‘same everywhere in their frame (8 = —tanh (goT/c)], all dimensions of
the freely-falling frame (including those of the bundle of electric field lines
around the charge) will alse appear Lorentz contracted along the X-axis
by a factor v = cosh (goT/c) at- T,
To define the electromagnetic field at any event in this gravitational
field, we can use the measurements of the electric and magnetic field com-
ponents carried out in a local Lorentz frame, using the Lorentz force law
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on a test charge, at that event (see e.g. Ref. 14, p.568). In our case this lo-
cal Lorentz frame is the coincident inertial m_.m..:m described above, which,
as already mentioned, in this particular case rmﬁwmsm to be a common
instantaneous rest frame for all observers supported in the gravitational
field. Therefore the electric and magnetic field measurements in the in-
stantaneous rest frame will also describe the electromagnetic fields for all
observers supported in the mnma;mﬂ_o:w_ field. Now with respect to this
coincident inertial frame our freely falling charge is moving with a uniform
velocity 8. Therefore, its electric and magnetic field ooBvosmﬁm. in the
Z == 0 crogs~section plane, are given by (Ref. 1, p.552)

By o o EUAX)
* T OHAX)? YR
By = . ey
Y (v uﬁbkvu +M\uvm\u
B, = edvY.
L PE= QNAD&CM +u\£m\u '

with all: oﬁcma field: noEvngm being zero. Here ADN v nmvnmmmﬁm the
distance of the field point from the “present” position of the charge, along
the X-axis. We have assumed that. the charge remains on the X-axis, i.e.
Y = Z = 0 for the charge motion throughout. - =

As discussed above, the field components of the freely mm::_m charge

“in the supported frame at an instant. T are also described by the above

equation, . however; now. 3 and 7y are to be functions of 7, with 3
~tanh (goT/c) and v = cosh(goT'/c): Therefore the nonvanishing com-
ponents of the electromagnetic fields.in the supported frame, in the Z = 0
cross-section plane, can be written as - : :

P ecosh (goT/c)(AX).
X ™ lcosh 2(goT/c)(AX)2 + Y2)3/2
7Y™ (cosh 2goT /) (AX)E + YIPRZ ,_
By . —esinh(geT/c}Y . ,

Aoomw NGDH\&ADNU“ + M\uvm\u

Here (AX) =X — X \nomi oT/c) for = field coEﬁ at X, where N is the
initial position of the charge at T' = 0. It should be noted that without
any loss of generality we can choose Xp = X, i.e., we could choose the
arbitrary constant g to be the value of the acceleration due to gravity at
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the point X; where the freely falling charge iz instantaneously at rest (at
say, T = 0), and then T will be the proper time measured on a standard
clock stationary at X; in the gravitational field.

We can express the electric and magnetic field ooEwonm.mnm at any

point in n.rm supported frame, in terms of a spherical coordinate system
{r,8,¢) with an origin at the “present” position of the charge, as

E. = . : ecosh Gan._\& .
""" 12(cosh(goT /<) — sinh*(goT/c) sin” 8)"/2
By = —~esinh(goT'/c) sinf (4)

r2(cosh 2(goT/c) - sinh®(goT/c) sin® 8)3/2 ’

with all other field components being zero. Here r? = (AX)? +Y? + 22,
and angle 8 is measured ‘with respect tothe X-axis. o

m_mm.:-.m 1. The éléctric field Tines distribution of a charge as seen at different :.._mﬁmsnm
during its free fall in a “uniform” gravitational field: T o

Mmm:w.m 1 shows a plot of the electric field lines in the supported frame,
for ?m.mﬁm:w instants of time. At any instant the field lines are everywhere
radial with respect to the instantaneous position of the charge, though,
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depending upon the “present” velocity of the ‘freely falling charge, are
bunched towards the plane perpendicular to the direction of motion. It
is of course well known that for a uniformly moving charge the electric
field lines appear as if all scales along the direction of motion have been
squashed by the Lorentz contraction factor (see e.g. Ref. 15, p.163). The
global electromagnetic field configuration for & freely falling charge, as
seen at any instant in a static uniform gravitational field, thus appears
to be that of & charge moving uniformly with respect to an inertial frame
with a velocity equal to the instantaneous velocity of the freely falling
charge. It should be noted here that in the case of a simulated gravi-
tational field though the possible measurements by uniformly accelerated
observers remain confined to only a part of the total space-time observable
in an inertial frame [13], the electromagnetic field in the space-time even
outside that part, as observed from the coincident inertial rest frame of
the accelerated observers, will be that of a charge moving with a uniform
velocity. Thus even if the accelerated :observers. cannot observe beyond
their horizon at X = 0, the inertial observers do see the field lines to be
continuing in radial directions with respect to the instantaneous charge
position, even beyond X = 0 (ke. for all X <0 .as well).

It has been proposed in the literature [6] that the nonvanishing of the
Poynting vector at an observer’s position should be taken as the criterion
for the existence of radiation. The fallacy inherent in such a proposition
is easily seen from the case of a charge moving uniformly with respect
to an inertial frame. It is a well accepted fact that no radiation will be
seen by inertial observers from a uniformly moving charge. However, even
in this case there is a nonvanishing Poynting vector at every location of
the inertial observer, The reason of course being that as the uniformly
moving charge approaches (or recedes from) an observer's position, its
field strength {both in magnitude and direction) undergoes a change at
the observer’s location, resulting in a finite Poynting vector there. The
Poynting vector at any location, in the case of a freely falling charge, can
be readily calculated from our eqs. (3) or (4) and the formulae appear to
be the same as those given by Kovetz and Tauber [6} (apart from a small
difference in one of their Poynting vector components (S4), which appears
to be due to the presence of a small mistake in their given formulae, as
could be also verified from a dimensional comparison of their expression for
$4 with that of the other Poynting vector component). The Poynting flux,
cited by Kovetz and.Tauber [6] as evidence for the presence of radiation in
this case, represents actually the “convective” flow of the self-field energy
of the charge due to its “present” motion at any instant, like it happens
in our quoted example of a uniformly ‘moving charge. The absence of
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radiation in the case of a freely falling charge can be also demonstarated
in the following manner. ) ) .

In the standard picture for radiation from a charge accelerated with
respect to an inertial frame, because of the finite value of the wave prop-
agation speed e, the electric field values at a distance R respond to any
change in the motion of the charge, only at a time R/c later. Thus while
the field values in regions “near” to the charge (R < ct) will have adjusted
to a change in motion (acceleration) of the charge, the fields in the far
away regions would still correspond to a previous unchanged motion of
the charge. Electromagnetic radiation (in the famous J. J. Thomson pic-
ture; see e.g. Ref. 15, p.163, Ref. 16, p.193) is supposed to represent the
transverse fields in the transition zone between the nearby regions (where
electric field vectors point in radially outward directions from an actual
present position of the ‘charge) and the far-off regions (fields in radial
directions from ‘a would-have-been charge position, assuming a uniform
velocity for the charge). But as we discussed above, in the case of a freely
falling charge in a uniform gravitational field, the electric field around the
charge everywhere keeps “in step” with the charge motion (i.e. the field
lines will everywhere be radial with respect to the instantaneous position
of the charge; eq. (4), Fig. 1). At any field point this happens due to a
“local cause” (i.e., because of the acceleration due to gravity at the loca-
tion). No extra “information” from the charge position, in the form of a
transverse field (radiation!), is required to travel towards the field points

(to adjust the fields there to the changing position and velocity of the

charge). Therefore even an observer stationary in the gravitational field
will not see any electromagnetic radiation emanating from a freely falling
charge. . : : : :

A question that. may arise is whether one can still apply the stan-
dard formuiae to calculate radiation from s freely falling charge in the
more realistic case of a static but non-uniform gravitational field by using
the value of g (at the charge location) as the acceleration parameter in
Larmor’s formula. It is obvious that the answer ‘cannot be a generic yes.

As we have already seen above, at least in ¢ne case (i.e. in a “uniform” "

gravitational field case) radiation is not determined by the value of g. It
is true that in the case of a non-uniform gravitational field, the electric
field lines may not “fall” everywhere in step with the charge. But then
any distortions in the field lines in such a ease would depend only upon
the departure of g from the uniform gravitational field case (tidal-effects
of gravity!). implying that these distortions arise primarily not because
of g itself but rather depend upon its spatial differentials and are thus
only of a second order in nature. Any consequential transverse bending
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in field lines will vary from case to case and could be totally different for
different tidal fields, even for similar local values of g (as measured say, by
locally supported observers). This picture is qualitatively different from
the standard picture of radiation where the transverse bends in the field
lines are determined by the actual acceleration of the charge, and where
the radiated coﬁmw at any instant is calculated from the value om the charge
acceleration at that moment. .

3. A CHARGE “SUPPORTED” IN THE GRAVITATIONAL FIELD

In contrast with the case of a freely falling charge, in the casé of a sup-
ported .am.wﬂmm no tnertial frame exists in which the charge remains at rest.
In fact it is only in this case {a supported charge seen by a freely falling ob-
server) that the question of electromagnetic radiation from a cn.m.mo.na_% ac-
celerated charge arises. The strong principle of equivalence demands that
the conclusions about the absence of radiation from a supported charge,
as inferred by 2 co-supported observer, should also be equally A&E for an
inertial observer that may, durifig his/her free fall, be instantaneously at
rest alongside of the supported observer. We show here that in the Smm.&
a uniformly accelerated charge, the R~! dependent acceleration fields are
cancelled exactly by the transverse component of the R~2 velocity fields, .
at all distances in the inertial frame in which the charge comes to rest”
instantaneously, when the effects of the retarded time are properly taken
into account, o S .

The electromagnetic fields, as derived from the Liénard-Wiechert po-
tentials for a moving charge, (in the notations of Ref. 1) are given by,

B=nxE,"

B .. Bn=f enx{(n-p)x g}

E=emi-any ¢ RO—Bn) _
All quantities on the right hand side are to be evaluated at the 8533
time. It is usually assumed that the acceleration fields (second term on
the right hand side), which fall with distance as 1/R and are transverse in
nature (perpendicular to n), solely represent the radiation from m‘orwamm.y
since the contribution of the velocity fields (o 1/R?) appears to be negli-
gible for a large enough value of R. :

. Now we are interested in m.oum..,&.imrmmosm_ motion (8||3), for which
the electric field vector reduces to
| .. o n=f_ msx?xmw
" YR (1 By

E ¢ R(1-8.n)3"
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ﬂmwum erw vector identity 3 = zomuv —nx{nx QY we can rewrtte the
electric field in terms of the radial (along n) and transverse components
as, ’ o ‘ B
| B n XA x (8 +¥*BR/c)}
: m.«umuﬁ ~ B.n)? *e ¥*R*(1 ~ B.n)3 ) 5)

. The second term on the right hand side includes transverse terms both from
the velocity and acceleration fields together. It should be noted that while
we might separate the velocity fields and acceleration fields for the purpose
of simplification in our calculations, but as such there is no fundamental
difference in the nature of fields calculated from the two terms and that
the net electric field at any point is given by the vector sum of all terms.

. Now for a uniformly accelerated particle, the expression ¥8+ Qum.m\ c
represents the “present” velocity of the charge (for all values of R) and is
zero in the instantaneous rest-frame of the charge. Actually as we go to a
larger value of R, in order to calculate the retarded position and velocity

.Om the charge, we also have to go further back in time. For a uniformly
accelerated charge, in its instantaneous rest-frame, the retarded value of
velocity is directly proportional to R. The net effect being that

\SQ.TQ\w_QM Hm.ﬂmvﬂammﬁp,ﬂc_ _ i ‘ ﬁmv

_ 2R} 1-Bn)?" ™
in the instantaneous rest-frame of a uniformly .mnnmpm_..wﬂma.orw.amm. -More-
over B = 0 everywhere. Thus we see that the acceleration fields throughout
are cancelled neatly by the transverse component of the velocity fields, ev-
erywhere in the .Emﬂw:ﬂm.amo:m.Sm?m.mam. implying no radiation fields for
a charge supported in a gravitational field, in conformity with the strong
principle-of equivalence. S o P

- Using Born's solution [17] for the fields of a charge undergoing a hyper-
bolic motion, Pauli [4] first diew attention to the fact that in the instanta-
neous rest-frame of a uniformly accelerated charge B = 0 throughout and
from this he further construed that there is no radiation for such & motion.
Subsequently it has been argued [3] that while B = 0 may be something
unusual for accelerated motion and of some interest, it has nothing to do
with the- presence or absence of radiation. However, as we show below,
there is something more to it than just a matter of mere curiosity. From
the expressions for field strengths as given in Ref. 3, eq. {2.6), we see that
the electric field vector is independent of the sign of the time parameter

for all R. Therefore

E=¢e
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¢, while the Evmnmmn.. field n&mammm‘ sign with ¢, but for any of the field
components the magnitude at ¢ is exactly the same as that at ~t. Also

the spatial location of the charge is the same at f as it was at —£. Let

us consider a spherical surface centered at the charge position at ¢ or —t
(we choose the radius of the sphere to be small enough so that its surface
lies well within the region where eq. (2.6) of Ref. 3 is applicable at both t
and —t). Now the Poynting vector, at any point on the spherical surface,

" at time t is exactly equal but in opposite direction to its value at time

—t. Thus if there is an outflow of electromagnetic energy through the sur-
face at ¢, it immediately follows that there was an equal inflow of energy
through that surface at —t (the energy flow being null at t =0 as B =0).
Also the velocity of the charge at ¢ is equal but in opposite direction to
that at —t. Therefore any change in the kinetic energy of the charge or in
its self-field energy contained in the volume enclosed within the spherical
surface duting the time intervals between t and t-+df is equal and opposite
to the change taken place between —(¢ + dt) and —t. Applying Poynting’s
theorem to ‘this case we see that the rate of energy being “fed” into fields

by the charge during its acceleration phase is exactly equal to that of the

energy being “retrieved” from the fields during the deceleration phase. It
is important to note here that Poynting's theorem is strictly defined only
for fired instants of time in any inertial frame (see e.g. Ref. 1, p.236).
That means, it allows us to relate the instantaneous rate of energy loss of
the charges or of electromagnetic fields enclosed within a volume to the
Poynting flux through the enclosing surface, all to beé calculated for the
same instant of time. It is here immaterial that the fields both within and
at the surface were caused by the motion of the charges at some retarded

 times. It appears that the Poynting flux in the case of a uniformly accel-

erated charge merely accounts for the rate of increase in the self-field of
the charge during the acceleration phase and an equal but opposite rate of
decrease during the deceleration phase. There does not appear to be any
radiated power, which should be positive both during the acceleration and
the deceleration phases (since, from Larmor’s formula, it is proportional
to the square of acceleration), and which when algebraically added to the
equal but opposite Poynting flux required for the rate of self-field energy

“changes at ¢ and —t, should have made the magnitude of the net Poynting

flux through the spherical surface cbmpca.. at these two times. We may
note that a positive Poynting flux at R — oo (corresponding to ¢ — o0},
taken in-[3} as proof of radiation, merely points out to- the fact that the
self-field energy of the uniformly accelerated charge is still increasing (as
the velocity of the charge increases indefinitely). .
"o verify it further, we can calculate the total energy in the fields of
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a .ov.m:.mw at time ¢ = 0, the fields arising from its .camonu? aceelerated
motion at retarded times. The field mum_.mw is given by the volume integral

.mm_w
E= [ —
.\.ma. du.

Figure 2. Volume element for calculating the field m:&.mu.

Hn is vOmﬁEm ﬁo calculate this volume integral in terms of the wmﬁm&mm
quantities in the following manner. First we calculate the field energy in
the region between two spherical surfaces S and S; (Fig. 2) at the retarded
distances R and R + dR where dR = ¢dt. This field energy also includes
the contribution of the energy radiated, if any, by the charge between
time ¢ and t + dt, where ¢t = —~R/c. The two spheres are centered on two

different positions of the charge, separated by a distance Bedt. Therefore

m_.hm radial distance between the two spherical surfaces is not dB but is
instead dR(1 ~ Bcosf) (see also e.g. Ref. 18, p.359) with the volume

element dv = 2w R%(1 — Scos8) sinf# dRdf. From the Eﬁmmnmn

" sin @
.\o {1-Bcosth® %iuq,

Mﬁ total field energy in the volume enclosed sxrwb S and &y Hm .moc.gn_ ja)
e

: 2

d€ = % dR. - (8)
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To calculate the total field energy, we can sum over volume elements en-
closed between all such spherical surfaces. This in fact implies that we
integrate the above expression over all values of R. As may be expected,
the integrai diverges for R—0, but we can restrict the lower limit of R at
a small but finite value ro, which may indeed mmvnommn_“ the radius of the

~charged wmusam. In ﬁrma case

.W &.N.N Nu .. . , ..
\ Nlmw, a ©)

Now ‘this is mx.m..na% arm mxvammmmon for the field energy U = e2/2rg, of
a charge that is permanently at rest in an inertial frame. But in-our
calculations we included the contribution of the acceleration fields also,
for all' R. Now-£€ could not have been equal to U 4f there were radiation
emitted ot a constant rate {as given by Larmor’s radiation formula) from
such a charge all along its accelerated motion. Thus it follows naturally
that there is no m_moﬁoammsmso rediation from a uniformly accelerated
charge. . :

It may be pointed out 2;; in the case of a ormnmm that is being
uniformly accelerated beginning from an infinite past, as seen in an inertial
frame, there appears to be a plane of discontinuity {corresponding to R =
oo) for the field lines. From the divergence of the electric field vectors
Leibovitz and Peres {19] derived a surface charge density at the plane

. of discontinuity, amounting to a total .charge —e, and which led them

to the conclusion that the Maxwell’s mm:m.fozm are EoovaSEm ‘with the
existence of a single nrman :Emo_,no_u\ accelerated at all times. This curious
result, however, may not be so strange as it appears at a first glance. We

- can get a- similar -picture in the’ case of a charge (say, ) permanently

stationary in an. inertial m.wam, if we consider it to be surrounded by a
charge —e distributed uniformly on a spherical surface of radits R, and
then let B — oo. In fact, this will be the more appropriate picture of the
Coulomb fields of a charge if we strictly hold to the view point that the
electric field lines should always terminate on a charge. The discontinuous

fields in the case of a uniformly accelerated charge actually correspond to

the original (Lorentz transformed) Coulomb fields of the charge “before” it
began its acceleration at a time ¢ — —oa [7}. It is important to note here
that any radiation energy supposed to be emitted by the charge during
any finite intérval in the past, should. of course lie only within a sphere
of a finite retarded radius ‘R, without having anything to do with the
field energy in the plane of discontinuity at R = oo, which could as such
have causal relation with events belonging only to an infinite past (see
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also the discussion in Ref. 3). To see it more explicitly, we consider the
situation at time #, = 0, when the charge momentarily comes to rest
(708> = 0). Any radiation emitted by the charge during a time interval
between —¢, and %o could lie only within a’'spherical volume of a retarded
radius Ry = ct;. But as is easily seen from egs. (8) or (9), the total field
energy in the region within R; for the uniformly accelerated charge at time
to = 0, is only €2/2rg — e?/Ry, exactly the amount expected in the self-
Coulomb field energy of a “presently” stationary charge. Thus it is clear
in this case that there has been no field energy “radiated” by the.charge

during the time interval between —t; and & as there is none whatsoever -

excess (radiated!) field energy within R = ct. Further, this argument
is true for any value of t;. If anything, the field energy in the plane of
discontinuity could be said to have been radiated away from the charge
due to a rate of change of acceleration, in accordance with the radiation
reaction equation (see e.g. Ref. 8, p.27), at the instant of the “start”
of acceleration (the event at ¢ = —oo to which the fields in the plane
of discontinuity are causally connected), without implying any radiation
losses during the uniform acceleration phase.

We should point out that even though the field energy of a uniformly
accelerated charge, as measured in its instantaneous rest frame, is equal
to that in Coulomb fields of a charge permanently stationary in an inertial
frame, the electric field vectors at various points are not identical in both
cases. In the accelerated case the field vectors are in radial directions with
respect to the retarded positions of the charge and not with respect to the
“present” position of the charge. It has an interesting consequence in the
case of an accelerated sphere with a uniform distribution of charge over
the spherical surface. The electric field inside the sphere is not zero. It can
be shown that a uniformly accelerated sphere, which has a uniform surface
charge density; has a finite electric field inside it, whose value to a first order
is & constant and is equal to —2eg/3roc?, where'g = v is the acceleration
vector (see e.g. Ref. 20). It follows from the strong principle of equivalence

that a sphere with a uniform surface charge density, but supported in a .

gravitational field (say, on the surface of earth), also has a finite electric
field inside it, in the same direction as the acceleration due to gravity. The
“energy in these “inside-fields” {cx 7o) is extremely small for small ro, and
could be ignored for most purposes. But in principle a detection of such a
field inside a finite-sized sphere with a uniform charge distribution could be
a test of the strong principle of equivalence, though the practical difficulties

might be immense because of the weak nature of this field (e« g/c?) as

compared to the effects of any non-uniformity in the spherical distribution
{whose effects perhaps could partially be eliminated by say, a 180° rotation
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of the sphere, without disturbing the charge distribution).. For one thing
the sphere will necessarily have to be made of & highly non-conducting
material to avoid cancellation of the acceleration dependent inside-electric
fields by a redistribution of the conduction electrons on the surface of the
sphere. = : : T : ;

4. CONCLUSIONS

We have shown that from the strong principle of equivalence the elec-
tric field of a freely falling charge in a static, uniform gravitational field’
would appear to fall along with the charge, remaining everywhere in a ra-
dial direction from the instantaneous position of the charge. Accordingly
there will be no transverse fields (radiation!) from a freely falling charge in
such a gravitational field. It is further shown that in the case of a charge -
supported in such a gravitational frame, the electric field energy, as mea-
sured by freely falling observers instantaneously at rest with respect to
the charge, is equal to the Coulomb field energy of a charge permanently

stationary in an inertial frame.. It follows that in neither of the two cases
will there be any electromagnetic radiation. . :
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