Physics 480/581

Problem Session No. 9
Monday, 29 October, 2018

1. Answer parts (a), (b), and (c) of Problem 31.1 from Thomas Moore's text, which involves a sinusoidal wave with wave vector null and moving in the $+\hat{z}$-direction, and polarization matrix of he form
$t\left(\begin{array}{llll}t & x & y & z \\ x \\ y & 0 & 0 & a \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ a & 0 & 0 & a\end{array}\right)$.
2. On p. 398 of Moore's text, a binary star system is approximated by a pair of point masses m_{1} and m_{2} rotating, with frequency ω, about their center of mass, from which they are distances r_{1} and r_{2}, the sum of these two being the constant D. Verify the matrix shown for their reduced quadrupole moment tensor, in Equation (34.5). Then go on and understand (34.7).
3. If \widetilde{K} is a Killing vector and \widetilde{u} is a geodesic, show that their scalar product is a constant along that geodesic. Recall that Killing's equations say that

$$
K_{(\beta ; \alpha)}=0 .
$$

