Physics 480/581

Problem Session No. 5
Monday, 1 October, 2018

1. Having determined all the equations for a geodesic in the Schwarzschild metric, using our usual orthonormal tetrad, you will know that the last of those 4 equations was the following:

$$
\frac{d}{d \tau}\left(\mathcal{H} \frac{d t}{d \tau}\right)+\mathcal{H}^{\prime}\left(\frac{1}{\mathcal{H}} \frac{d r}{d \tau}\right)\left(\mathcal{H} \frac{d t}{d \tau}\right)=0
$$

Please show that this can be re-written as a "perfect derivative," i.e., simply the action of $d / d \tau$ on some expression. Therefore you will have discovered a constant of the motion for masses moving in this manifold.
2. Consider the second component of the covariant derivative, in the $\hat{\theta}$ direction:

$$
\frac{d}{d \tau}\left(r \frac{d \theta}{d \tau}\right)+\frac{\mathcal{H}}{r}\left(\frac{1}{\mathcal{H}} \frac{d r}{d \tau}\right) r \frac{d \theta}{d \tau}-\frac{\cot \theta}{r}\left(r \sin \theta \frac{d \varphi}{d \tau}\right)^{2}=0
$$

It's a second-order differential equation, so one may give it two initial conditions. Show that if one sets $\theta=\pi / 2$, the equatorial plane, and also $d \theta / d \tau=0$ at the initial time, then it will always stay in the equatorial plane.
3. Use the given connections to determine the following two curvature 2 -forms, $\Omega_{\hat{r} \hat{\theta}}$ and $\Omega_{\hat{\theta} \hat{\varphi}}$, via the generic expression:

$$
\underset{\sim}{\Omega}{ }_{\lambda \mu}=d \underset{\sim}{\Gamma} \lambda \mu+\underset{\sim}{\Gamma} \lambda \nu \wedge{\underset{\sim}{~}}^{\nu}{ }_{\mu} .
$$

4. Using the Schwarzschild metric, imagine a circle in the equatorial plane, with a constant value of $r>2 M$ and $\theta=\pi / 2$, at a fixed time. What is the radius of this circle?
