Problem Session Questions

Physics 480/581

Problem Session No. 4
Monday, 24 September, 2018

1. On a vector space of 1 -forms over a flat manifold with coordinates $\{x, y, z, t\}$, choose as a basis the following:

$$
\ddot{\theta}^{1} \equiv d x+i d y, \quad \theta^{2} \equiv d x-i d y, \quad \theta^{3} \equiv d z-d t, \quad \theta^{4} \equiv d z+d t .
$$

For 2 timelike-separated events, A and B on the manifold, with coordinates $\left\{x_{A}^{\mu}\right\}$ and $\left\{x_{B}^{\nu}\right\}$ the (Lorentz invariant) interval between them would be given by

$$
\mathbf{g} \equiv \boldsymbol{\eta}_{\mu \nu}\left(x_{B}^{\mu}-x_{A}^{\mu}\right)\left(x_{B}^{\nu}-x_{A}^{\nu}\right) \equiv-\left(\Delta \tau_{A B}\right)^{2},
$$

assuming that τ is the parameter along a worldline of some observer who passed between A and B. An infinitesimal version of the interval, using $\left\{d x^{\mu}\right\}$ as a choice for a basis of 1-forms or the choice given above $\left\{\theta^{\alpha}\right\}$, would just be

$$
\boldsymbol{\eta}_{\mu \nu} d x^{\mu} d x^{\nu} \equiv Q_{\alpha \beta}{\underset{\sim}{\theta}}^{\alpha}{\underset{\sim}{\theta}}^{\beta},
$$

where $Q_{\alpha \beta}$ is the form of what is usually referred to as the metric tensor relative to the first choice of basis 1-forms, as given in the beginning of this problem. Please determine the matrix which has the $Q_{\alpha \beta}$ as its elements.
2. Using the connection 1-forms for the Schwarzschild metric, in the orthonormal basis

$$
{\underset{\sim}{\omega}}^{\hat{r}} \equiv \frac{1}{\mathcal{H}} d r, \quad{\underset{\sim}{\hat{\theta}}}^{\hat{\theta}} \equiv r d \theta, \quad{\underset{\sim}{\omega}}^{\hat{\varphi}} \equiv r \sin \theta d \varphi, \quad{\underset{\sim}{\omega}}^{\hat{t}} \equiv \mathcal{H} d t
$$

the connection 1 -forms are the following:

$$
\text { Connections: }\left\{\begin{array}{ccc}
\Gamma_{\hat{r} \hat{\theta}}=-\mathcal{H} \frac{\omega^{\hat{\theta}}}{r}, & {\underset{\sim}{r} \hat{r} \hat{\varphi}}=-\mathcal{H} \frac{\omega^{\hat{\varphi}}}{r}, & \Gamma_{\hat{r} \hat{t}}=\mathcal{H}^{\prime} \omega_{\sim}^{\hat{t}}, \\
\underset{\sim}{\Gamma_{\hat{\theta} \hat{\varphi}}}=-\frac{\cot \theta}{r}{\underset{\sim}{\omega}}^{\hat{\varphi}}, & \Gamma_{\hat{\theta} \hat{t}}=0, & \Gamma_{\hat{\varphi} \hat{t}}=0,
\end{array}\right.
$$

write out the 4 differential equations that define a geodesic in this spacetime, remembering that the connection 1-forms are skew-symmetric in their indices.
3. The 4 -velocity can be written as

$$
\frac{d}{d \tau}=\widetilde{u}=\frac{d x^{\mu}}{d \tau} \frac{\partial}{\partial x^{\mu}}
$$

If the coordinates $\left\{x^{\mu}\right\}$ are the usual spherical coordinates, $\{r, \theta, \varphi, t\}$, what is a matrix representation of the components of the 4 -velocity?
4. In the orthonormal basis, show that the components of the 4 -velocity are such that

$$
\gamma=\mathcal{H} \frac{d t}{d \tau}, \quad v^{\hat{r}}=\frac{d r / d t}{\mathcal{H}}, \quad v^{\hat{\theta}}=\frac{r}{\mathcal{H}} \frac{d \theta}{d t}, \quad v^{\hat{\varphi}}=\frac{r \sin \theta}{\mathcal{H}} \frac{d \varphi}{d t} .
$$

Remember that $(\widetilde{u})^{2}=-1$.

