Physics 480/581

Problem Session No. 3
Monday, 17 September, 2018

1. Let $Z=Z_{x} d x+Z_{y} d y+Z_{z} d z+Z_{t} d t$ be a 1-form, where the components depend on all of the usual Cartesian coordinates in spacetime, i.e., $\{x, y, z, t\}$. Create the Hodge dual $* Z$, which then lives in the vector space Λ^{3}. Then calculate the exterior derivative of this 3 -form, which is then a 4-form. Lastly, calculate its Hodge dual, which is simply a scalar function.
2. $\quad T^{\mu}{ }_{\lambda}$ are the components of a tensor of type $[1,1]$, as, perhaps, can be seen from the location of the indices, and is currently presented, as such a tensor, relative to the basis of that vector space, as

$$
T=T_{\lambda}^{\mu} d x^{\lambda} \otimes \frac{\partial}{x^{\mu}}
$$

Please use the metric tensor, $\boldsymbol{\eta}_{\mu \nu}$ and/or its inverse to find matrix presentations of $T^{\alpha \beta}$ and $T_{\rho \sigma}$.
3. Begin with the usual form of the Faraday, as a 2 -form over spacetime, in special relativity, namely $F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$. Determine the Lorentz invariant quantity $F_{\mu \nu} F^{\mu \nu}$. Then show that if we use the skew-symmetric matrix \mathbf{F} to present the components of the original 2-form, that
a. the quantities $F^{\mu \nu}$ are presented via the matrix $\mathbf{W} \equiv H^{T} \mathbf{F} H$. Lastly, find the relation between our invariant and the trace of the matrix product of \mathbf{F} and \mathbf{W}.
4. Work out the 3 -dimensional plus 1-dimensional forms of the proper-time derivative of the 4 momentum, which should involve the 3 -dimensional force and power, perhaps?

