Physics 480/581

Problem Session No. 12
Monday, 19 November, 2018

1. Suppose two equal mass, non-rotating black holes collide, and produce a black hole of some new total mass, also not rotating. Use the theorem that the area of the horizon of a black hole may never decrease to determine the maximum amount of the original masses, m each, may be radiated away.
2. A massive particle is dropped from rest at a particular value of $r \equiv r_{0}$, AND in the equatorial plane. Find equations for the values of the constants e and ℓ in terms of $d t / d \tau$, which would be the only initially non-zero component of the 4 -velocity, and show that

$$
e=\sqrt{1-2 m / r_{0}}, \quad \ell=-\frac{2 m a}{r_{0} e} .
$$

3. Defining the angular velocity of an object, as measured from infinity, as $\Omega \equiv d \varphi / d t$, show that if $\ell=0$ and we are in the equatorial plane then $\Omega=\omega$, and that it therefore vanishes as $r \rightarrow \infty$, while it increases as r decreases. becoming just $a /\left(2 m r_{+}\right)$at the horizon. This is finite, and since the particle is observed-from infinity-spending infinite time approaching the horizon, it also implies that it will continue to spin around and around forever as it approaches.
