Physics 480/581

Problem Session No. 11
Monday, 12 November, 2018

1. For the Kerr metric determine the area of the surface called the (outer) horizon, i.e., the surface with $\mathrm{dt}=0$ and

$$
r=r_{+}=m+\sqrt{m^{2}-a^{2}},
$$

which is where Δ vanishes, so that $g_{r r}$ is infinite.
2. Since the scalar product of a 4 -velocity with a Killing vector is a constant, then u_{φ}, and u_{t} are constants. However, $u^{\mu}=d x^{\mu} / d \tau$. How do these relate?
3. Given the standard orthonormal basis for 1-forms appropriate for the Kerr metric, find the corresponding reciprocal basis for tangent vectors.

$$
\begin{align*}
& \left.\begin{array}{l}
{\underset{\sim}{\omega}}^{r}=\sqrt{\frac{\Sigma}{\Delta}} d r, \quad{\underset{\sim}{\omega}}^{\theta}=\sqrt{\Sigma} d \theta, \quad{\underset{\sim}{\omega}}^{t}=\sqrt{\frac{\Sigma \Delta}{A}} d t, \\
{\underset{\sim}{\omega}}^{\varphi}=\sqrt{\frac{A}{\Sigma}} \sin \theta d \varphi-\frac{2 m a r \sin \theta}{\sqrt{\Sigma A}} d t=\sqrt{\frac{A}{\Sigma}} \sin \theta(d \varphi-\omega d t),
\end{array}\right\} \quad \quad_{\omega^{\hat{\mu}}} \equiv Y^{\hat{\mu}}{ }_{\alpha} d x^{\alpha} \\
& \text { with }\left\{\begin{array}{l}
\Sigma \equiv r^{2}+(a \cos \theta)^{2}, \\
\Delta \equiv r^{2}+a^{2}-2 m r, \quad \omega \equiv \frac{2 m a r}{A}=-\frac{g^{\varphi t}}{g^{t t}}=-\frac{g_{\varphi t}}{g_{\varphi \varphi}}, \\
A \equiv\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta=\left(r^{2}+a^{2}\right) \Sigma+2 m a^{2} r \sin ^{2} \theta=\Delta \Sigma+2 m r\left(r^{2}+a^{2}\right) .
\end{array}\right. \tag{2}
\end{align*}
$$

