Physics 480/581

Monday, 5 November, 2018

1. First consider the Faraday tensor, and show that any eigenvector it may have must be a null vector. Then consider the special case where both the electric and the magnetic fields are non-zero and only in the \hat{z}-direction. For this case find the eigenvectors and their eigenvalues.
2. If \widetilde{K} and \widetilde{L} are Killing vectors for some metric, show that the vector which is their commutator, i.e., $\widetilde{Q} \equiv[\widetilde{K}, \widetilde{L}]$ also satisfies Killing's equations.
3. Given the Kerr metric, create an orthonormal basis for 1-forms appropriate for it, and then find the corresponding reciprocal basis for tangent vectors.

$$
\begin{array}{r}
\mathbf{g}=\Sigma\left(\frac{d r^{2}}{\Delta}+d \theta^{2}\right)+\frac{A}{\Sigma} \sin ^{2} \theta d \varphi^{2}-2 \frac{2 m a r}{\Sigma} \sin \theta d \varphi d t-\left(1-\frac{2 m}{\Sigma}\right) d t^{2}, \\
\Sigma \equiv r^{2}+(a \cos \theta)^{2}, \quad \Delta \equiv r^{2}+a^{2}-2 m r, \quad A \equiv\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta
\end{array}
$$

