13.2 » The Lagrangian is £ = %ma’:z + mgz, sop=0L/0t = mi,and H = pt — L =
p?/2m — mgx.The Hamilton equations are

t=0H/Op=p/m and p=-0H/dxr =mg.

Combining the two Hamilton equations, we find that ¥ = g as expected.

13.3 » The moment of inertia of a uniform disc is I = %MRE, and its kinetic energy is
31w? = 11+%/R%. Therefore, £ = §(mi+ma+ s M)i%+(m1 —ma)gz, p= (mi+me+3sM)i,
and H = pi — L = p*/2(m1 + ma + M) — (m1 — ma)gz. The Hamilton equations are

& =9dH/Op=p/(m +my+ %f’r‘f} R'A'dn{] p=—0H/0x = (m; —my)y,
and the acceleration is & = g(m; —my)/(my +my + 3 M).

13.4 » The two original coordinates are x and y, and the constraint equation is z +y+ 7R
= const. Thus the equations for x and y in tcr:[ns of the generalized coordinate x are r = =
(of course) and y = —x + const, both of which are independent of time.

13.7 »xx (a) The height of the track is y = h(x). Therefore the distance traveled by the
car in a small displacement is

ds = \/dz? + dy? = \/1 + W (z)%dx. (i)

It follows that the car’s speed satisfies v> = (1 + h”)i?, so the Lagrangian and generalized
momentum are

aLc
L= jmi’[l +1'(2)’] —mgh(x) and  p=Z= =mifl +K'(z)’). (i)
The second equation is easily solved for & and the Hamiltonian is

s I
H=dp—L= a7

g
. M p M pRR
= dp  m(1+ h'?) B £ dr  m(l1+h?)?

+ mgh

(b) Hamilton’s equations are
— mgh’ = m(&*W'h" — gh') (iii)

where in the last step I used Eq.(ii) to replace p by p = ma(1 + h').

Before we do anything with this Hamiltonian result, let us look at the Newtonian pre-
diciean, M3 = Fog = —dU/ds — —mgh! VT T 15, (iv)
where, in the last step, I wrote U = mgh and I used Eq.(i) to replace ds by dzv/'1 + %, To

replace § by &, note that

d ds d (dx h' b i
§=——=— [ —V1+h2})=3v1+ W24 —.
s dt dt  dt (dﬁ‘, el ) saankl i V1+ 2



Inserting this result into (iv) and solving for # we find that, according to Newton,

} gh_r 2 h!huiz
= = v)

Let’s now see that we get the same result from the Hamilton equations (iii). From the
first of Eqgs.(iii) we find
B d.i'— d P B P p 2hRh'z
dt”  dtm(1+h?)  m(+h?) m(1+ h?)2

If we use the second Hamilton equation (iii)I[u eliminate p and the second of Egs.(ii) to
eliminate p, this is easily seen to be exactly the same as the Newtonian result (v).

There is a much simpler way to accomplish the same result, though it may seem a cheat
at first sight. Hamilton’s equations, like Lagrange’s from which we derived them, are true
with respect to any choice of generalized coordinates. Therefore we can handle the same
problem using as our generalized coordinate s the distance measured along the track. If
we do this, then the Lagrangian is £ = Ims* — U(s) and the generalized momentum is
p = 0L/ds = ms. Thus the Hamiltonian is H = p?/(2m) + U(s) and the second Hamilton
equation is p = —9H/ds = —dU/ds or m§ = —dU/ds in agreement with the Newtonian
result Eq.(iv).

13.8 x Since U =0, £L =T — U = im(i® + §* + 2%). Therefore, p, = dL/di = mi,
and similarly p, = my and p, = mz, and finally H = p-f — £ = p*/2m. The six Hamilton
equations are

. OH pa . oH

t=—=— ¢gnd p=——-—=

dp, m ox

with similar equations for the y and z components. We can combine these into two vector
equations F = p/m and p = 0, with the expected solutions p = const = p, and r =r, + v, t

where v, = p,/m.

13.10 » The KE is T = §n1(x2 + 12 we choose the PE to be zero at the origin,
U=- fo F.dr = }kz? — Ky. The generaln]:ed momenta are given by p = mr and the
Hamiltonian is



1 2 2 l7...2 -
H = 5—(pz +py) + 3ka° — Ky.

The two Hamilton equations for x are
. OH e _ JH
Er=—— = = and p,=-——=
G}pnt m dz
which combine to give ¥ = —(k/m)z. Thus r oscillates in SHM, x = Acos(wt — §), with
angular frequency w = y/k/m. Meanwhile, th&two y equations are
. OH p . JOH
yzﬁzﬂ—i and p,=-—=K
which combine to give # = K/m. Thus y accelerates in the positive y direction, y =
$(K/m)t* + vyt + y,, with constant acceleration K/m.

—kz

13.12 » As generalized coordinate I'll use the bead’s position x relative to the axis of spin,
as measured in the frame of the rod. The bead’s PE is zero and its KE (relative to the
ground) is T' = fm(i? + 22w?), so £ = im(i? + 2%w?) and the generalized momentum is
p = OL/di = mi. Therefore the Hamiltonian R

p2 1 2 .2

— 2mziwl.
2m 2

This is not equal to the energy T+ U (neither relative to the rod nor relative to the ground),
because

H=pi—-L=

o2 P
(T + U)(rel to rod) I‘ E"”z = g # H.
and .
= e P .
(T + U](I‘El to ground) = %m[q:z + ;r:zu)z) = = 1 %:f.rurzwz #H.

13.17 #xx (a) From (13.32) we see that Z = 0 if and only if p, = 0, and from (13.34) that

this implies that 1/3
’ _pf =mg or I* - pj
mc2z 3 = m2c2g

(b) If we combine the two equation (13.34) to give # and then put 2z = 2, + ¢, we find



E=2= P: = d [p"g_—mg]
m(c2+1)  m(c>+1) [me223

1 p‘f € 3ple
= 1-3—)—-mg|=-
m(c? +1) [me2z? A m2c?(c? + 1)22

where in passing to the second line I used the binomial approximation for z=% and where, in
the first expression of the second line, the first and last terms cancelled because of the result
of part (a). This equation implies that € oscillates in SHM.

(c) The last equation of part (b) implies tkat the frequency of these oscillations is

o 3
v m};zf 2 +1 f3@°\/ ZF+1 = V3gosina
where for the second equality I used (13.32) to replace p, by mc?z 2@0 and for the third I
replaced ¢/v¢? 4+ 1 by sina where « is the half-angle of the cone.

(d) For w to be equal to @,, it must be that sina = 1//3 or a = 35.3°. If this is the
case, the height 2 will return to its initial value in the time for one complete orbit around
the cone. Therefore the orbit is closed and is (approximately at least) a circle, tilted at a
small angle €., /c2,.

13.18 xxx (a) According to (7.103), £ = %mf’2 — q(V —1-A). Therefore, the generalized
momentum has p, = dL/0i = mi + qA,, with similar expressions for p, and p,. Thus

—gA
p=mr+¢gA or r= P—9~ (vii)
The Hamiltonian is ) m
. _P—qA (I [p—qA P—qA
=g i—E= m [2m( m ) q(V m =

s 1 2 7
= 5. (P —qA)" +q

(b) Hamilton’s equations are

. OH  p,—qA, :
B and px—--——q(Zu.m— )

with similar equations for y and 2. Combining these two equations we find

ey A _ 3 94, v\ 0A, . . 04,

P T\ T ) T e o1
_ (v, oA 3_4 _OAL\ (04, oA,
=1 oz ot ) TY\ oz T oy 92 Oz

which you can recognize as the z component of the Lorentz-force equation mr = g(E + v x B).
Since the other two components work in exactly the same way, we're home.




13.20 » (a) U(r) = — [ F-dr = —Fr. Therefore

2 3 kw3
_p o _Ptp
H_Qm F.r= S Fox — Fyy.

(b) If we choose our x axis in the di:rectic-_n[n of F, then F, = 0 and the coordinate y is
ignorable.

(c) If neither axis is parallel to F, then neither F, nor F), is zero, and neither H /0x
nor dH /Ay is zero, so neither of the coordinates is ignorable.

13.23 «#* (a) The gravitational PE is U,, = Mgy —mgy — mg(x + y) + const = —mgax if
we drop the uninteresting constant. The spring PE is harder. If we let [, denote the spring’s
natural, unloaded length, then k(l, — I,) = mg and if 2’ denotes the spring’s true extension

(from its unloaded length), then I, + 2" = I, + x so
2 =x+ (I, —1,) =x+¥
Thus the spring PE is
:- g
Usge = 3k = 3kt (2 + 72
If we add this to U,, = —mgx, the terms in mgx cancel and (dropping another uninteresting
constant) we get U = Uy, + U,y = %:’m‘2 as claigned.
(b) The KE is T = 1My + Imi? + Im(i % 9)2 = im[39* + (& + §)?], from which we

2 i
) = 2ka® + mgx + const.

find the momenta, a7 oT
px=%=m{;ﬁ+y) and py=a =m(Z + 47)
whence
'+'—& and '—LUJ— )
Loy = il 3= 3m Py Pz)-

From these we can calculate the Hamiltonian,
o 1 (pm — D )2 2 1 2
H=T4ll=— |22 _I¥ 4Lp —kx*.
R { 3P|



Because this doesn’'t depend on y, the coordinate y is ignorable. This is traceable to the fact
that the total mass on each side is the same.

(c) The Hamilton equations for = are

O 1 . _ oM i

" p, 3m(4p' —p) and  po= Cor - (i)
and those for y oH 1 oH

= a_Py = ﬁ(py —p;) and p,= _D_y = 0. (x)

The initial conditions are that z(0) = z,, y(0) = y,, and &(0) = §(0) = 0. These imply
that p,(0) = p,(0) = 0, and, because p, is constant, p, = 0 for all time. Combining the
two equations (ix) and setting p, = 0, we find that ¥ = 4p,/3m = —4kz/3m. Therefore
T = xr,coswt, where w = /4k/3m. Next, from the first of Egs.(ix) (with p, = 0) we find that
Py = %m:ir = —%m;,u:nn sinwt and finally, from the first of Egs.(x), § = —p./3m = iw:roﬂinwt,
S0 Y = —i.ro coswt + const = y, + %.T.c.(l — coswt).

13.26 » The potential energy is

p
=— [Fdx= %l.._r, R
and the Halniltﬁxli;lll is
H L_J X

2

P 1, 4

=—+4+-kz*=F. :
2m * Vi RA

In the two-dimensional phase space, with coordinates

x and p, this defines the flattened ellipse shown.

13.31 x o: ) dz
(a) If v = kr = (ka, ky, kz), th‘mv"_ﬂ(a; B;Jrﬂ;) -
dJdz Or Oy
(b) If v=Fk(z,x,y), then V.v = (dr+a +az)

(c) If v = k(z,y,2). thchv—L(aer ' ) !.
(d)va:k(x.y,—Q:lthean—.((gf —y— —) k(1+1-2)=0

i'-!

&2




13.32 x» (a) With v = (£,0,0), V.v = 9k/0x + 0+ 0 = 0. This flow is sketched in the
left picture. Fluid is flowing into the square on its left, but out on its right, and these two
effects cancel. To put it another way, the square as a whole is moving to the right, but its
front and back are moving at the same speed, so its volume doesn’t change.

(b) With v = (kz,0,0), V.-v = kdz/0x = k. This flow is shown in the middle picture.
Fluid is flowing into the square on its left, and out on its right. Since the speed of flow is
greater on the right, there is a net outflow. The square as a whole is stretching.

(c) With v = (ky,0,0), Vv = kdy/dz = 0. This flow is shown in the right picture. Fluid
is flowing into the square on its left, and out on its right. The speed of flow is greater near
the top, but the net flows on the left and right cancel. The square as a whole is becoming a
parallelogram, but its volume isn’t changing.

13.35 xx The initial volume occupied by the beam is V, = (tRZL,)[7(Ap,)*2Ap.]. (This
is the volume in phase space.) By Liouville’s theprem, this volume can’t change. Thus when
R shrinks (with L, and Ap, fixed), Ap, has te-grow. In the long run, this means that R
will increase again.




