9.2 » (a) As seen by inertial observers outside the station, the (square) astronaut has a
centripetal acceleration A = w?R which is supplied by the normal force N.

astronaufs
frame

(b) As seen by the crew inside the station, the astronaut is at rest under the action of
two forces, the normal force N and the inertial force —mA. To simulate normal gravity, we
must have A =w?R =g orw = /g/R =0.5rad/s = 4.8 rpm.

(c) The apparent gravity g.,, = w?R is proportional to R. Thus if we decrease R from
40 m to 38 m, the fractional change in gapp 18 0 Gapp/Gapp = OR/R = —5%.

9.6 xx+ Just as in (9.14), the requirement that the ocean’s surface be an equipotential
implies that

Ueg(T) — Ueg(Q) = Uia(Q) — Usia(T), (iv)
and the left hand side is just mgh(f). The term Uiiq(T') on the right is given by (9.13)
l =
Utid(T) = —G;nl-.fmﬂ’b (E + Eo) (V)
where we must find the values of x and d Q

for the point 7". Obviously = R, cos#,
but d requires more care. By the law of
cosines, d* = d? + 2d,R,cosf + R2.
Thus

do

R R2\ V2
]85 f = .
( ¥ d, e do?)

d~ \Jd? +2d,Rocos0 + B2  do

1 1 1

Since R, < d,, we can approximate the term in parenthesis using the binomial series,
(146 ¥ =1 %F + gfz + -+ Although we need to keep the term €2, we can drop from it
anything higher than (R./d,)?, so we find

i . zf B R2\ 3 (.R. :
-= = 1—5(2I0m9+d—3)+§(2ac059)]

R, 1 R?
L PR P L
N ¥ T

(3 cos?0 — 1)] : (vi)



When this is substituted into (v) the term which is linear in cos @ exactly cancels the second
term on the right of (v) leaving

A 2
Upa(T) = _Gft[mm T 1R,

do 242
The value of U;y(Q) is found by putting § = 7/2 (and hence cos = 0), and the difference
on the right of (iv) is

(3cos®@ —1)] .

3G M, mR2
2d?
Since the left side of (iv) is mgh(#), we conclude that h(#) = h, cos?6, where
3GM,mR? 3M,R}
2d3mg  2M.d?

cos’6.

Uhid(Q) — Usa(T) =

he =

since g = GM,/R2.

The height h(#) = h, cos®8 is zero at the point @ where # = 7/2 — as it had to be, since
it was defined as the height measured up from sea level at Q. It is positive for all other
values of @ and symmetrical about # = 7/2, rising to a maximum at # = 0 and . This
produces the oval shape shown in the picture.

9.9 x F.: =2mv x 2 = 2mu,2cosf due east, and

Foop  2v,Qc0s6 2 x (1000 m/s) x (7.3 x 10~° rad/s) x (cos40°) — 0.0114
mg g o 9.8 m/s’ o Y

9.10 »+ From Eq.(9.31) to (9.32) the derivation is exactly the same whether €2 varies
or not. If € varies, then the first time derivative on the right of (9.32) picks up an
extra term involving €2. Specifically, in place of (9.33) we now have (d?r/dt?)s, = ¥ +
20 x P+ x (2xr)+ Q xr. If we multiply both sides by m. the left side becomes F. the
net “real” force, and we get the equation of motion mi = F 4 2mi x 2 + m(§2 x r) x 2 +
mr X §).




9.12 » (a) All the rules of statics (including those concerned with total torques being zero)
are derivable from the requirement that the net force F on every particle of the system must
be zero, F = 0. If we wish a structure to remain static in a rotating frame, then we must
use the equation of motion (9.34) for each particle in the rotating frame. Since all of the
particles are to be stationary (in the rotating frame), this reduces to 0 = F + F.. This
leads to all of the usual conditions except that where we usually use the net force F we must
include the centrifugal force and use F + F..

(b) For the puck on the rotating horizontal turntable, there are four forces, its weight
mg, the normal force N of the table, the force of friction f, and the centrifugal force. If the
puck is not to move on the table these must sum to zero, mg+ N+ f + F_ = 0. The two
vertical forces must balance, so N = mg, and the two horizontal forces must also balance,
so Fp = m$¥P%r = f < uN = pmg. Therefore r < pg/°.

9.14 x* In the rotating frame of the bucket, the water is in equil-
ibrium and its surface is an equipotential surface for the Q
combined gravitational force (PE = mgz) and centrifugal
force (force = m{¥?p and hence PE = —m?p?/2). Therefore,
the surface is given by mgz — m£2p?/2 = const, or

£

Vg Q—pz + const,

29

which is a parabola, as claimed.

9.16 » With axes fixed on the rotating rod as shown, the bead stays on the z axis and its
velocity is v = @X. The three forces on the bead are the

normal force N = Ny, the centrifugal force

F. = mQ?zx, and the Coriolis force

F.. = —2mQiy. The two components of the
equation of motion are m# = F4 = m{?z and
N = F.,. The solution is z(t) = Ae™™ + Be .
The centrifugal force drives the bead out along
the rod. The normal and Coriolis forces just
balance out.




9.18 »x As seen in a frame rotating with the system, there are four forces on the mass: its
weight —mgy, the centrifugal force mQ2x%, the normal force N of the confining plane, and
the Coriolis force F.,,. The last two both act in the z direction (normal to the confining plane)
and must cancel each other, because there is no motion in this direction. The equations of
motion in the remaining two directions are §j = —g with solution y = y, + vyt — % gt?, and
# = Pr with solution x = Ae™™ + Be*¥. The vertical motion is the same as that of a
body in free fall. Except in the special case that A = 0, the = motion may be inward or
outward initially, but eventually the particle moves outward at an exponentially increasing
rate, caused by the centrifugal force. In the case that A = 0, the particle moves inward,
slowing down because of the centrifugal force, and approaches the y axis as t — oc.

9.19 xx (a) As seen by a ground-based observer, the puck has initial velocity QR in the
tangential direction. Since it is subject to zero net force, it travels in a straight line at
constant speed (left picture). As seen from the merry-go-

round, the puck is subject to the two
inertial forces (centrifugal and Coriolis).

It is initially at rest, so the Coriolis force is
initially zero, and the puck is accelerated
outward by the centrifugal force. As it
speeds up, the Coriolis force becomes
increasingly important and the puck
curves to the right, spiralling outward.

View from ground from mermy-go-round

(b) As seen from the ground, the puck is initially at rest. Since it is subject to zero net
force, it remains at rest indefinitely. This means that, as seen from the merry-go-round, the
puck describes a clockwise circle with
angular velocity Q and speed QR. This is
quite a subtle result in the rotating frame.
The centrifugal force is mQ?R outward,
and the Coriolis force is 2mf)* R inward;
thus the net force is mQ?R inward (as
seen by observers on the merry-go-round),
and this is .ju§t .thc rcqt.lircd ccnt.ri.pctal View from ground
force to hold it in the circular orbit!

stationary

3t

from mermy-go-round




9.22 »x Let S, be the inertial frame in which the charge —q orbits () in a weak magnetic
field B. In this frame the equation of motion is

d*r kqQ . dr
m (E)su = r—gq (E)s‘, x B (viii)

where the first term on the right is the Coulomb attraction of () and the second is the
magnetic force —gv x B. Let us now move to a frame S rotating with angular velocity €2
relative to §,. We can rewrite the two derivatives of Eq.(viii) in terms of the corresponding
derivatives in S, as in Section 9.5. (I'll call these latter derivatives ¥ and r as before.) In S
Eq.(viii) becomes

. .  kqQ .
m¥ —2mie x @ —m(Q xr) xﬂ_—r—zr—q{r—kﬂ xr) x B.

[f we choose the angular velocity so that £2 = gB/(2m), then the terms involving 1 on either
side cancel exactly. The terms involving double cross products don’t quite cancel, and we're

left with

o keQ. q°
mrz—r—zr—E(er) xB.
If the B field is sufficiently weak, we can drop the second term on the right, and we're
left with the equation for a body orbiting in an inverse square force (the Kepler problem).
Therefore, in the rotating frame S the charge ¢ moves in an ellipse (or hyperbola), and in
the original frame &, (relative to which § is rotating slowly), the elliptical orbit precesses
slowly.

9.26 »» The equations of motion are given by (9.53). To zeroth order in € these reduce to

=0, =0, and = —g,
with the familiar solutions
T=1Ust, Y=Upt, and 2=1v,.t— g%

If vou substitute these into those terms of (9.53) that already contain a factor of Q (and
hence are only small corrections), you will find the equations

T = 2Q(v,, cos — v,,sin ) + 2Qgt sin f

i = —20uv,, cosf

2= —g+4+ 2Qu,, sinb.

These three equations can be integrated twice to give precisely the requested equations (9.73).




9.28 xx (a) If we ignore 2 entirely and set vy, = 0, Eqs.(9.73) become & = v,.t, y = 0,
and z = v,, — %gfi‘. Thus the time of flight (time until z = 0 again) is ¢ = 2v.,/g and the
range R (value of x at landing) is R = 2v,,v.,/¢ = 2v.2 cos(a) sin(a)/g. If v, = 500 m/s and
« = 20°, these become ¢t = 34.9s and R = 16.4 km.

(b) According to the second of Egs. (9.73) (with v,, = 0), y = —Qu, cos(a) cos(8)t>. At
latitude 50° north, # = 40° and

y=—(7.3 x 107> s71) x (500 m/s) x cos(20°) x cos(40°) x (34.9 s)> = —32m;

that is, the shell lands 32 m to the south of the target. At latitude 50° south, the factor
cos f has the opposite sign, and the shell lands 32 m to the north.

9.30 sxx I'll choose axes as usual, with x east, y north, and 2 4h y

vertically up. The picture shows the hoop as seen from i

above. Consider first a small segment of hoop subtending

an angle do with polar angle a. The mass of this segment "

is dm = mda /2w, and the Coriolis force on it is ;
eas

dF ., = 2dm (v x §2)
where /“

v =wr(—sina,cosa,0) and £ = Q(0,sinf, cosh).

The segment’s position vector is r = r(cos a,sina, 0) and the torque on it is

dT.o: =t X dF ., = 2dmr x (v x ) = 2dm[v(r-Q) — Q(r-v)]
= 2dmwr?Q)(—sin’a, sina cosa,0) sinf.
To find the total torque, we must replace dm by m da /27 and integrate over a from 0 to 2.

The integral of sin’a gives 7, while that of sin acosa is zero. Thus, the total torque on the

hoop is
Pcor = — {THL&'?'QQ sin g)i.

which points west with magnitude mwr?¢)sin é.




9.32 x»+ The enemy ship is due east of the gun, which is aimed in that direction. That is,
Uyo = 0, and Eqs.(9.73) simplify to
T = Vot — (Q,osin0)t2 + 3(Qgsin 6)t>
y = —(Quy, cos 6)t? (ix)
z = Vot — gt + (Quy, sin 0)t2.

(a) If we ignore Q entirely, we get the same answers as in part (a) of Problem 9.28. In
particular, the range is R, = 2v,,v.,/g. (I've called it R, to emphasize that it’s the range
ignoring €2.)

(b) We now wish to work to first order in (2, and we must first use the third of Egs.(ix)
to find the time at which the shell lands. Solving that equation for ¢ when z = 0, we find

Uzo sin @ Uzo J-“:co“. 0
Vs = %g (1 - m%) t whence = 2;‘ (1 + QQETHIH)

to first order in €). (I used the binomial approximation in solving for t.) This gives ¢ as the
sum of two terms. The first is the answer of part (a) (ignoring €2 entirely) and the second

is the first order correction to t. To find by how much the shell misses the target, we must
substitute this corrected time into the expressions for z and y in Eqgs.(ix). The expression
for y already contains a factor of €, so, to first order, we can just use the zeroth order time,
to give

20,0\ 2 Y
U= _(!!E}mn COos 9] — —32 m
g

(at latitude 50° north). This is the same answer as in Problem 9.28. The east-west position
x requires more care. The first term in the expression for z in Egs.(ix) does not involve (2 at
all. Thus to get x correct to first order in © we must include the first order correction to ¢
in this term. (In the other two terms we don’t need to do this, because they already contain
one factor of €2.) Thus from (ix) we get

0., 200, sin @ 20, \ 20,,\°
A% . i (1+ - )—(vasinﬂ)( 2 ) - %{Qgsinr?)( = )
g g g g

— R+ M (U 3_ 3 ngg) “ R+ 491;03 sin arsin # (00820' B 1 SiHQCE) .
g zo = Vzo T 30 2 3
Because R, is the actual distance of the target, the second term is the distance (east-west)
by which the shell misses. Putting in the given numbers this gives +70 m. That is, the shell
overshoots by 70 m to the east (in addition to being 32 m to the south).




9.34 x»x As suggested, I'll write the puck’s position as R + r, where R points from the
earth’s center to P and r from P to the puck. Notice that R and r are almost exactly
perpendicular and it is certainly true that » << R. The equation of motion is

F=go(r)+2tx Q2+ [ x (r+R)]| x Q2+ N/m (x)
where g, (r) is the “true” acceleration of gravity at the position of the puck,
R+r R+r R+r
=-GM ———=-GM——(1+7*/R*)*? = -GM—— = g,(0) - Uo—
8o(r) R+ M—p= (1 477/ M—pi= = 80(0) — 4:(0)

where in the approximation I dropped terms of order (r/R)?. Returning to the equation of
motion, Eq.(x), we note that the centrifugal term consists of two terms. The one involving

r can be ignored (I'll justify this later) and the one involving R combines with g,(0) to give
g(0), the observed free-fall acceleration at P. Therefore

¥ =g(0) —gr/R+2F x Q+N/m.

[In the second term on the right, I have replaced g,(0) by g = ¢(0), because we can ignore
their tiny difference in this term, which is already small.] Bearing in mind that r lies in
the xy plane and that g(0) is perpendicular to that plane, we can write down the z and y
components of this equation as [the components of I x £ are given in Eq.(9.52) if you don’t
want to work them out]

¥=—gx/R+2yQlcosf® and 1§ = —gy/R—2icosb

These two equations have exactly the form of the Foucault equation (9.61) except that the
length of the pendulum L has been replaced by the radius of the earth.

The frequency of the puck’s oscillations is w, = \/g/R = 1.24 x 10~ s7!, giving a period
of 7, = 2w /w, = 5000 s or an hour and a bit. This frequency is at least an order of magnitude
greater than the frequency of precession, 2, = 7.3 x 107° 57!, so it makes sense to say that
the puck oscillates with frequency w, and precesses with frequency (2..

If the amplitude of oscillations is A, then the puck’s speed v is of order v ~ Aw,. The
three forces to be compared are

gravitational restoring force = mgr/R ~ mgA/R = mAw?
Coriolis force = 2m|v x Q| ~ 2mAw,2
Im(2 x r) x Q| ~ mAQ2.
Since w, > €, this confirms that the gravitational restoring force is much bigger than

the Coriolis force and that the term m(f2 x r) x €2 in the centrifugal force can, indeed, be
neglected.




