8.2 xx (a) The Lagrangian is L=T — U or
L= %mli‘f 4 %mgi‘f — [magz1 + magze + U(r)]
= [LMR? - MgZ)] + [~ U(r)] = Lam + Lna
where [ have chosen rectangular coordinates with 2z measured vertically up and Z is the 2
coordinate of the CM position, Z = (myz; + ma2y)/ M.
(b) The Lagrange equations for the three components of R are
MX=0, MY=0 MZ=-Mgy,

so the CM moves just like a projectile of mass M. The Lagrange equations for the relative
coordinates are

p¥ = -V, U(r)
where V. denotes the gradient with respect to the relative coordinates. This last equation is
precisely Newton’s second law for the motion of a single particle of mass p, position r, and
potential energy U (r).

8.4 x The x equation is
oL doLC . ou p
o  dt oz ox

with corresponding equations for y and 2. These are precisely Newton’s second law, F = uf,
for a single particle of mass p and position r = (z, y, 2), subject to the force F = —VU.

8.8 xx The Lagrangian is £ = %f‘vﬁr’fﬁ%—%gi‘z—%kr?. The Lagrange equation for R is R= 0,
so the CM moves with constant velocity. The equation for r is ui = —kr, which implies that
the relative position moves like a two-dimensional isotropic oscillator with angular frequency

i—nR




8.10 xx (a) The KE is given by (8.12), and the PE is just U; + U, + Uyy. Using (8.9) you
can check that
U=U,+Us+ Uy = 1k(r? + 17) + j0kr? = kR? + k(o + J)r?.

(In deriving the last expression, remember that m; = ms so that r; and ry are just R +r/2.
Also, M = 2m, and the reduced mass is pu = %ml) Therefore

L=L1MR?+ Lui® — kR? — Lk(a + L)r?
where r? = 22 + 32, and so on.
(b) There are four Lagrange equations. That for the CM coordinate X reads
oL d oL -
U —2kX = MX
oxX —digx

with exactly the same equation for Y. Thus both components of the CM position oscillate
with the same frequency /2k/M, and the CM moves around an elliptical path, as described
in Section 5.3.
The equation for the relative coordinate = reads
oL docL
— = == or —kla+ Yz = pi
dr _ dt 0% (i g
with exactly the same equation for y. Therefore both components of the relative position r

oscillate with the same frequency / k(o + %)/,u? and r also moves around an ellipse.

8.12 xx (a) According to Eq.(8.29), ui = —dU.g/dr. Therefore, the planet can orbit at
a fixed radius if and only if dU.g/dr = 0. Since Uegg = —7/r + €2/2ur?, it follows that
dU.g/dr = v/r? — £2/ur®, which is zero when r = r, = £2/~p.

(b) The “equilibrium” radius r, is stable if and only if U.g is minimum at r,; that is, its
second derivative must be positive. This derivative is
d?U, -2 342
|- Fm L3

dr2 73 prd 3

where, in the second equality, I used the result of part (a) to write {2 = yur,. Since this
second derivative is positive, the equilibrium is stable. Near the minimum, the effective
PE has the approximate form U.g ~ const + %(7/?‘03)(?' —15)% Substituting this into the
equation of motion, we get pi' = —dUsg/dr = —(v/7.2)(r —r,), which shows that r oscillates
about r, with angular frequency wy,. = v/7/wr2, which is exactly the same as the angular
velocity of the planet in its circular orbit. (To see this, set the centripetal acceleration w?r
equal to Fy.,/pt.) Therefore, the period of oscillation is equal to the orbital period.

8.14 xxx (a) If U = kr", the force is F = —dU/dr = —knr"~*. That kn > 0 means simply
that the force is attractive (inward, toward the origin). See the graphs on the next page.

(b) An orbit of fixed radius r, occurs if the derivative of U.g is zero at r = r,. The
relevant functions are



19 19 )
Ug = kr™ + 2‘['”‘2 y W=k — and Ul =kn(n—-1)r" 24+ 3%
The derivative vanishes at radius r, = (£2/ukn)'/("+2). The corresponding circular orbit is
stable if the second derivative is positive at r = r,. As you can check, after a little algebra,
Ul(ro) = (n +2)0%/ur. Therefore the circular orbit is stable if n > —2. This agrees
with the graphs where you can see that Usg has a minimum for n = 2 and n = —1, but a
maximum for n = —3.

3’

(c) When r = r, + €, with € small, the effective PE is approximately

1 (n4 2)£2
Usgt(r) = const + SU%(r,)€® = const + 5%62
and, provided n > —2, the equation of motion, pué = —Ul;, implies radial oscillations of

angular frequency wee = Vn+2 {/ur? = Vn+2 w, where w = £/ur? is the angular
velocity of the circular orbit. That is, 7,.. = 7/v/n + 2, as claimed.

If /n+2 is rational, v/n + 2 = p/q where p and ¢ are integers, then after a time ¢ =
PTose = qT both the orbital motion and the radial oscillations will be back where they started;
that is, the whole motion will be about to repeat itself. In the pictures, the dashed circles
show the circular orbits and the solid curves the motion with small radial oscillations.




8.16 x+ Multiplying both sides of the given equation by (14 € cos ¢) gives r +ex = ¢ (since
rcos¢ = x) or r = ¢ — ex. Squaring both sides, setting 72 = 22 + 32, and rearranging, we
find (1 —€2)2? 4+ 2cex 432 = . If we divide both sides by (1 — €2) and define d = ce/(1 — €2),
this gives y? o2

e , e
(x +2dr)—1—1_62—1_62.

Next we can add d? to both sides to “complete the square” on the left, to give

2 2 2 2 2
T d 2 y =3 € d2 = & ]_ 5 = 07 == .2
(i) +1—62 1—62+ 1—¢€? +1—62 (1—€2)? ¢
if we define a = ¢/(1 — €2). Finally, dividing through by a?, we arrive at
: 2 : g ! 2y ( 2 ) + y_z =
a a’(l —€?) a b

where in the second expression I have introduced the definition b = av/1 — €2. Collecting
our definitions of a, b, and d, we see that
¢

g=—— b= 6 and d =ae
1—¢ 1—¢€2

exactly as in (8.52).

8.17 x» (a) If G = r-p, then dG/dt =¢-p + p-r = mv? + F.r. If we integrate this from 0
to t, we get G(t) — G(0) = fé (2T + F-r)dt, or, dividing both sides by ,
G(t) — G(0
_()t_(_l = 2(T) + (F-r). (iii)
(b) If the motion is periodic and if K denotes the maximum value of |G| during any one
cycle, then the numerator of the left side of this relation can never exceed 2K. Therefore,
as we let ¢ — oo, the left side approaches zero.
(c) X U = kr®, then F = <~ VU = =nkr~'%, 50 F-r = —mkr® = =nl. Inserting this
in Eq.(iii) and letting ¢ — oo, we find 0 = 2(T") — (nU), if we now understand the two
angle brackets () to denote the long-term average of whatever is between them. Therefore,

(T) = n{U)/2.

8.18 x» We are given the satellite’s height Ay, = 250 km and speed vy = 8500 m/s
at perigee. The distance from the earth’s center is then ryi, = Re + hmim = 6650 km. For
any known satellite, we can certainly ignore the difference between the mass m and the
reduced mass g = m. Thus the angular momentum is { = M, min and the parameter
c of Eq.(8.48) is ¢ = €2/vit = (VmaxTmin)?/GM.. (Recall that v = GM,m.) Putting in the
given numbers, we get ¢ = 7960 km. The rest is easy: From Eq.(8.50), ruim = ¢/(1 + ¢€),
80 € = (€ — Tmin)/Tmm = 0.197. Similarly, from Eq.(8.50) rp.. = ¢/(1 — €) = 9910 km, so
e = Tmax — Fe = 3510 km.




8.22 xxx (a) If F' = k/r®, then U = k/2r?, and the effective potential energy is
28 k+02/m

omr? 22
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k> —£2/m
k< —2/m

J

If k > —£2/m, the effective PE is positive (left picture) and the particle can come in from
afar but must eventually move out to infinity. If & < —2/m, the effective PE is negative
(right picture); if E > 0 the particle can come in from afar and then move out again, but if
E < 0it is trapped in a bounded orbit.

(b) The transformed equation reads u” = —(1 + km/f?)u. If k > —%/m, the number
in parentheses is positive (call it £?) and the general solution is u(¢) = Acos(k¢ — 0). By
conservation of angular momentum, the angle ¢ always changes in one direction (always
increasing or always decreasing). Therefore, the factor cos(k¢ — d) must eventually vanish,
so that © — 0 and hence r — oc; that is, the particle eventually moves off to infinity, as
predicted.

If k < —¢*/m, the transformed equation has the form u” = A\?u, with the general solution
u(¢) = Ae*® + Be=*?. This solution may or may not vanish, depending on the values of A
and B. If it vanishes, then r moves off to infinity at some value of ¢. (In this case £ > 0.)
If u(¢) remains bounded away from zero (u > u, for some u, > 0), then r remains bounded
and the particle stays within some 7. at all times. (This is the case that E < 0.)

8.24 »xx With A < 0 and £? < —\m, the transformed equation for © = 1/r can be written
as

7 &

with the general solution u(¢) = —K + Ae"® + Be "%, It is easy to see that this function
can vanish no more than twice. Thus there are really just two cases to consider: (Remember
that, because angular momentum is conserved, ¢ always increases or always decreases. To
be definite, let’s assume ¢ always increases. Remember also that by definition r and u = 1/r
are positive.)

(1) In the range ¢;—g) < ¢ < oo, the function u(¢) never vanishes, so that u(¢) > wuyy, >
0. In this case r < r,.; that is, r is bounded. As ¢ — oo, the function u(¢) approaches
Ae®® which approaches infinity. That is, » — 0 and the particle eventually spirals in toward
the origin. (As you can check, A cannot be zero in this case.)

(2) In the range Pr=0) < ¢ < 00, the function u vanishes at least once, and the first
time it does so is at ¢ = ¢, (where ¢, may be infinity). In this case, as ¢ — o¢,, u(¢@)
decreases toward 0 and r = 1/u increases toward infinity; that is, the particle spirals out
toward r = oc.

U-”((é) _ (m|)\| . 1) w4 m_k — :‘{-Z(u—i— R’)




8.26 ~xx We have seen that Kepler’s second law (“equal areas in equal times”) is equivalent
to conservation of angular momentum, which in turn implies that the force is central. Since
the force is central and conservative, the variable u = 1/r satisfies the “transformed radial
equation” (8.41), which we can rewrite as

F = —[u"(6) + u(9)] Cu(¢)*/ 1.

Next, Kepler’s first law states that the path of any body orbiting the sun is an ellipse with
the sun at one focus, and we have seen that the equation for such an ellipse has the form
(8.49), namely, u(¢) = (1 + ecos¢)/ec, where € and ¢ are positive constants for any given
ellipse. When this form is substituted into the transformed radial equation, we find that

P Y (ep)

F = = 5

cl r
Finally, because the force is conservative, it cannot depend on the angular momentum of the
body, and the constant ¢ must be proportional to £2, and we're left with F' = —v/r? where

v is a positive constant.

8.30 xx If we multiply both sides of Eq.(8.49), r = ¢/(1 + € cos¢) by (1 + ecos¢), replace
rcos @ by z, and rearrange, we find that r = ¢ — ex. Squaring both sides gives 2% + 3% =
c? —2cex + €222, We now have two cases to consider. (a) If e = 1, the terms in x? cancel and
we're left with y? = ¢ — 2cz, a parabola. (b) If € > 1, we find (€2 — 1)2% — 2cex — y* = —c2.
Completing the square for z gives (€2 —1)(x —§)? — y* = —2 + 2?/(e* — 1) = 2 /(* —1).
Finally, multiplying both sides by (€2 — 1)/c?, we get
2 2

%—2—2:1 where o= fzil’ ,.-5’:iand6:me

which is the equation of a hyperbola.

8.34 xx If we use the notation of Example 8.6, R, = 1 AU and R3 = 30 AU. Therefore
the semi-major axis of the transfer orbit is as = (R; + R3)/2 = 15.5 AU and the period of
the transfer orbit is 7 = Te(ag/a-e)w = 7.(15.5)%2. The time for the transfer is half of this
period, namely %Tg = %'re(li').i'))w2 = 30.5 years.




