Lecture 40

(3-D Potentials \& Hydrogen Atoms)
Physics 2310-01 Spring 2020
Douglas Fields

Schrödinger's Wave Equation

- What if our potential depends on more than one coordinate?
- For instance, instead of a 1-D infinite potential well, what if we have a complete 3-dimensional box?

$$
\begin{aligned}
& V(x, y, z)=0\left\{\begin{array}{l}
0 \leq x \leq a \\
0 \leq y \leq b \\
0 \leq z \leq c
\end{array}\right. \\
& V(x, y, z)=\infty \quad \text { otherwise }
\end{aligned}
$$

- Let's start with our complete time-dependent Schrödinger's equation:

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi
$$

- And write it out explicitly in Cartesian coordinates:
$i \hbar \frac{\partial \Psi(x, y, z, t)}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \Psi(x, y, z, t)+V(x, y, z) \Psi(x, y, z, t)$

Time Independent Schrödinger's Wave Equation

- And we do what we did before, assuming that the solution can be written as a product of the space and time parts:

$$
\Psi(x, y, z, t)=\psi(x, y, z) e^{-i E t / \hbar}
$$

- To get the 3-D time independent Schrödinger's equation
$i \hbar \frac{\partial}{\partial t}\left(\psi(x, y, z) e^{-i E t / \hbar}\right)=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi(x, y, z) e^{-i E t / \hbar}+V(x, y, z) \psi(x, y, z) e^{-i E t / \hbar} \Rightarrow$ $E \psi(x, y, z) e^{-i E t / \hbar}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi(x, y, z) e^{-i E t / \hbar}+V(x, y, z) \psi(x, y, z) e^{-i E t / \hbar} \Rightarrow$ $E \psi(x, y, z)=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi(x, y, z)+V(x, y, z) \psi(x, y, z)$

Separation of Variables

- Now, the equation may look like a monster to solve, but it turns out that there is a nice method to approach such a problem, called separation of variables.
- First, let's assume that the solution can be written as a product of functions of a single variable:

$$
\psi(x, y, z)=X(x) Y(y) Z(z)
$$

- And plugging this into the time independent wave equations gives us:

$$
\begin{aligned}
& E X(x) Y(y) Z(z)=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) X(x) Y(y) Z(z)+V(x, y, z) X(x) Y(y) Z(z) \Rightarrow \\
& E X(x) Y(y) Z(z)=-\frac{\hbar^{2}}{2 m}\left(Y(y) Z(z) \frac{\partial^{2} X(x)}{\partial x^{2}}+X(x) Z(z) \frac{\partial^{2} Y(y)}{\partial y^{2}}+X(x) Y(y) \frac{\partial^{2} Z(z)}{\partial z^{2}}\right)+V(x, y, z) X(x) Y(y) Z(z) \Rightarrow \\
& E=-\frac{\hbar^{2}}{2 m}\left(\frac{1}{X(x)} \frac{\partial^{2} X(x)}{\partial x^{2}}+\frac{1}{Y(y)} \frac{\partial^{2} Y(y)}{\partial y^{2}}+\frac{1}{Z(z)} \frac{\partial^{2} Z(z)}{\partial z^{2}}\right)+V(x, y, z)
\end{aligned}
$$

- Now, in the case where $\mathrm{V}=0$ (inside our 3-D box), we are left with an equation that is independent of any spatial variables on the left-hand side (E is a constant), and has three terms on the right, each just dependent on one of the spatial variables.

Separation of Variables

- So each term must also be equal to a constant:

$$
\begin{aligned}
& E=-\frac{\hbar^{2}}{2 m}\left(\frac{1}{X(x)} \frac{\partial^{2} X(x)}{\partial x^{2}}+\frac{1}{Y(y)} \frac{\partial^{2} Y(y)}{\partial y^{2}}+\frac{1}{Z(z)} \frac{\partial^{2} Z(z)}{\partial z^{2}}\right) \Rightarrow \\
& E_{x}=-\frac{\hbar^{2}}{2 m} \frac{1}{X(x)} \frac{\partial^{2} X(x)}{\partial x^{2}} \\
& E_{y}=-\frac{\hbar^{2}}{2 m} \frac{1}{Y(y)} \frac{\partial^{2} Y(y)}{\partial y^{2}} \\
& E_{z}=-\frac{\hbar^{2}}{2 m} \frac{1}{Z(z)} \frac{\partial^{2} Z(z)}{\partial z^{2}}
\end{aligned}
$$

- And we recognize each of these as just the 1-D time-independent wave equation for the infinite square well, so we also know the solutions:

$$
\begin{array}{ll}
X(x)=A \sin \frac{n_{x} \pi x}{a}, & E_{x}=\frac{n_{x}{ }^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \\
Y(y)=B \sin \frac{n_{y} \pi y}{b}, & E_{y}=\frac{n_{y}{ }^{2} \pi^{2} \hbar^{2}}{2 m b^{2}} \\
Z(z)=C \sin \frac{n_{z} \pi z}{c}, & E_{z}=\frac{n_{z}^{2} \pi^{2} \hbar^{2}}{2 m c^{2}}
\end{array}
$$

Separation of Variables

- Remember that to get the total wave function, we have to put it all back together:

$$
\begin{aligned}
& \Psi(x, y, z, t)=\psi(x, y, z) e^{-i E t / \hbar} \\
& \Psi(x, y, z, t)=X(x) Y(y) Z(z) e^{-i E t / \hbar} \\
& \Psi(x, y, z, t)=D \sin \frac{n_{x} \pi x}{a} \sin \frac{n_{y} \pi y}{b} \sin \frac{n_{z} \pi z}{c} e^{-i E t / \hbar}
\end{aligned}
$$

- And the total energy is given by:

$$
\begin{aligned}
& E=E_{x}+E_{y}+E_{z} \\
& E=\frac{n_{x}{ }^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}+\frac{n_{y}{ }^{2} \pi^{2} \hbar^{2}}{2 m b^{2}}+\frac{n_{z}{ }^{2} \pi^{2} \hbar^{2}}{2 m c^{2}}
\end{aligned}
$$

$$
n_{x}=1, n_{y}=1, n_{z}=1
$$

$$
n_{x}=2, n_{y}=1, n_{z}=1
$$

Symmetry and Degeneracy

- Now, let's look at what happens when we make the box symmetric...
- Let $\mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{L}: \quad E=E_{x}+E_{y}+E_{z}$

$$
\begin{aligned}
& E=\frac{n_{x}{ }^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}+\frac{n_{y}{ }^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}+\frac{n_{z}{ }^{2} \pi^{2} \hbar^{2}}{2 m L^{2}} \\
& E=\left(n_{x}{ }^{2}+n_{y}{ }^{2}+n_{z}{ }^{2}\right) \frac{\pi^{2} \hbar^{2}}{2 m L^{2}}
\end{aligned}
$$

- Note: The energy can be the same for states with different sets of quantum numbers!
- This is called degeneracy - more than one state has the same energy - and is a direct result of symmetry.
- For each degree of symmetry, there will be a corresponding degree of degeneracy.
- For instance, in the above case there is symmetry in 3-D, and we will find the same energy in groups of 3 states, i.e., $(2,1,1)$ and $(1,2,1)$ and $(1,1,2)$.
- If one of the sides of the box was a different length, then there would only be 2-fold degeneracy.

The Coulomb Potential

- OK, so let's now investigate a more interesting potential than just a 3-D box.
- Let's look at the Coulomb potential, the potential between two fundamental charges, e:

$$
V(r)=\frac{-1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r}
$$

- Wait, but why look at the Coulomb potential?
- Because this is the potential that an electron feels due to a proton in the Hydrogen atom!
- Because of the spherical symmetry of the Coulomb potential, we can use a similar method to write the wave function as a product of three terms:

$$
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

- Which, as before gives us three separate differential equations to solve.
- However, because the potential isn't zero, and because of the spherical symmetry, the equations are no longer as straightforward as the infinite 3-D box.

The Hydrogen Atom

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R(r)}{d r}\right)+\left(\frac{\hbar^{2} l(l+1)}{2 m r^{2}}+V(r)\right) R(r)=E R(r) \\
& \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta(\theta)}{d \theta}\right)+\left(l(l+1)-\frac{m_{l}^{2}}{\sin ^{2} \theta}\right) \Theta(\theta)=0 \\
& \frac{d^{2} \Phi(\phi)}{d \phi^{2}}+m_{l}^{2} \Phi(\phi)=0
\end{aligned}
$$

- See, not so bad...

The Hydrogen Atom

- The solution looks foreboding, but, in fact, it's not as bad as it looks.

$$
\begin{aligned}
& \text { s. } \\
& \begin{array}{l}
\psi_{n m_{l}}(r, \theta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)}{2 n(n+\ell)}!} e^{-\rho / 2} \rho^{\ell} L_{n-l}^{2 \ell+1}(\rho) Y_{\ell}^{m_{l}}(\theta, \varphi) \\
n=1,2,3, \ldots \\
\text { with, } \quad \rho=\frac{2 r}{n a_{0}} \quad \text { and, } \quad \ell=0,1,2, \ldots, n-1 \\
m_{l}=-\ell, \ldots, \ell
\end{array}
\end{aligned}
$$

- The normalization constant.
- The r-dependence is just an exponential multiplied by a specific type of polynomial called a generalized Laguerre polynomial.
- The θ-dependence is just a special polynomial in $\sin \theta$ and $\cos \theta$.
- And the φ-dependence is just $e^{i m_{l} \phi}$
- The theta and phi parts together are known as the Spherical Harmonics, and are found in solutions to many spherically symmetric problems in physics.

Spherical Harmonics

Spherical Harmonics

$$
\psi_{n \ell m_{l}}(r, \theta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n(n+\ell)!}} e^{-\rho / 2} \rho^{\ell} L_{n-\ell-1}^{2 \ell+1}(\rho) Y_{\ell}^{m_{\ell}}(\theta, \varphi)
$$

Real (Laplace) spherical

$$
\ell=0 \quad \text { harmonics } \quad Y_{\ell}^{m_{\ell}}(\theta, \varphi)
$$ for $\ell=0, \ldots, 4$ (top to bottom) and $m=0$,

$$
\ell=1 \quad \ldots, \ell \text { (left to right). Zonal, }
$$ sectoral, and tesseral harmonics are depicted

$\ell=2$ along the left-most column, the main diagonal, and elsewhere, respectively. (The
$\ell=3 \quad \begin{array}{ll}\text { respectively. (T }\end{array}$ harmonics $Y_{\ell}^{-m_{\ell}}(\theta, \varphi)$ would be shown rotated
$\ell=4$ about the z axis by 90° with respect to the positive order ones.)

The Hydrogen Atom

- Note that we now have three integers that represent particular states:

$$
\begin{gathered}
n=1,2,3, \ldots \\
\ell=0,1,2, \ldots, n-1 \\
m_{l}=-\ell, \ldots, \ell
\end{gathered}
$$

- We should have expected three quantum numbers, since we are in three dimensions (like $\mathrm{n}_{\mathrm{x}^{\prime}} \mathrm{n}_{\mathrm{y}^{\prime}}$ and n_{z} for the 3D box).
- Here, n represents the primary quantum number, and the energy of the states are given by:

$$
E_{n}=-\frac{1}{\left(4 \pi \varepsilon_{0}\right)^{2}} \frac{m e^{4}}{2 n^{2} \hbar^{2}}=-\frac{13.6 \mathrm{eV}}{n^{2}}
$$

- Recognize this?
- The fact that the Schrödinger's equation gives us the same energy states as Bohr's model (which were experimentally verified) is good verification that it is good model.
- In fact, we will find out that it tells us something about the atomic orbitals that is in disagreement with Bohr's model!

Hydrogen Wave Functions

- The wave functions look like this, where we are looking at a cross-section of the 3-D wave functions, and color is used to show the amplitude of the wave function as a function of position.
- Note that these are the wave functions for a single electron in different states, depending on the quantum numbers n, l, and m_{1}.

Symmetry and Degeneracy (Again)

- Notice that the energy only depends on the quantum number n, so that there are several states that have the same energy.
- This is because the other two quantum numbers are associated with the angular dependence of the wavefunctions, and our potential, the Coulomb potential is independent of the angle!
- We will see later that we can break this symmetry (by adding a external electric or magnetic field) which will remove the degeneracies.

Superposition of Degenerate States

- The electron can be in any superposition of states, including states that have different energy.
- But if they have different energies, then the superposition state will have a probability distribution that changes with time.
- This represents motion of the electron, and therefore radiation.
- These superposition states won't be stable.
- However, if the states that are superimposed have the same energy, the probability distribution won't have any time dependence.
- They will represent stable states.

By Jfmelero - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.ph p?curid=17419806

https://commons.wikimedia.or $\mathrm{g} / \mathrm{w} /$ index.php?curid=540020

By Jfmelero - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.ph p?curid=17419805

Public Domain,
https://commons.wikimedia. org/w/index.php?curid=150 7616

States

- A state of the electron is described by a specific wavefunction (or a specific combination of wavefunctions in the case of a superposition state).
- The wavefunction is the complete wavefunction:

$$
\Psi(r, \theta, \phi, t)=\psi(r, \theta, \phi) e^{-i E t / \hbar}
$$

- And for states with determined energy (= eigenstates = stationary states), we solved the time independent 3D Schrodinger equation in spherical coordinates with the Coulomb potential to get:

$$
\begin{gathered}
\psi_{n l m_{l}}(r, \theta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n(n+\ell)!}} e^{-\rho / 2} \rho^{\ell} L_{n-l-1}^{2 \ell+1}(\rho) Y_{\ell}^{m_{l}}(\theta, \varphi) \quad \text { with, } \rho=\frac{2 r}{n a_{0}} \\
E_{n}=-\frac{1}{\left(4 \pi \varepsilon_{0}\right)^{2}} \frac{m e^{4}}{2 n^{2} \hbar^{2}}=-\frac{13.6 \mathrm{eV}}{n^{2}}
\end{gathered} \begin{aligned}
& n, 2,3, \ldots \\
& m_{\ell}=-\ell, \ldots, \ell
\end{aligned}
$$

Probability Distributions

- The probability of finding an electron within a radial shell dr is just given by:

$$
P(r) d r=|\psi|^{2} d V=|\psi|^{2} 4 \pi r^{2} d r
$$

- The factor dV goes to zero at $\mathrm{r}=0$, so that the probability distribution functions $\mathrm{P}(\mathrm{r})$, (shown in the figure here) go to zero even though the wave functions do not (see above).
- Note that there are nodes in the distributions, but whenever ℓ is maximum for a given n, there is a single peak at $\mathrm{n}^{2} \mathrm{a}_{0}$, the same result given by the Bohr model.

Angular Momentum Quantization

- So, what do the quantum numbers mean?
- The first, n , determines the average radial distance of the electron from the center of the nucleus, and is the primary driver of the electron's energy state.
- The second, ℓ, determines the quantization of the orbital angular momentum:

$$
L=\sqrt{\ell(\ell+1)} \hbar \quad \ell=0,1,2 \ldots n-1
$$

- Note that there are n different possibilities for the state of the orbital angular momentum for the $\mathrm{n}^{\text {th }}$ energy level.
- Also note that when $\ell=0$, the magnitude of the orbital angular momentum is zero - which is different from Bohr's model, where the electron is always orbiting around the nucleus.
- This means that for $\ell=0$ states, the electron spends a small, but not insignificant amount of time inside the nucleus.

Angular Momentum Quantization

- What about m?
- The third quantum number defines the projection of the angular momentum L onto some axis (which we will denote by the z-axis).
- Note that in the absence of any "probe", the potential is spherically symmetric, so we are free to define that in any direction.

$$
L_{z}=m_{\ell} \hbar \quad m_{\ell}=0, \pm 1, \pm 2 \ldots \pm \ell
$$

- For an $\ell=2$ state, L_{2} can take on 5 values, as shown in the figure.

Quantization and Mathematics

- The quantization of E, L and L_{2} can be viewed as the result of the boundary conditions, normalization and periodicity of the wave functions.
- The condition that $\Theta(\theta)$ does not go to infinity results in the quantum number ℓ.
- The condition that $\Phi(\phi)$ is periodic results in the quantum number m_{ℓ}.
- But one can also view the particular quantization rules in terms of the uncertainty principle:
- If any component of L could be equal to the magnitude, then we would have the electron orbiting in a plane such that p_{z} would be zero.
- That absolute knowledge of one component of the momentum would require a complete uncertainty of its position in that coordinate.
- Note that L_{x} and L_{y} are undetermined up to some value, leading to a definite and reasonable uncertainty on position.

