Lecture 4 (Mechanical Waves)

Physics 2310-01 Fall 2019
Douglas Fields

Characteristics of "Waves"

• Amplitude, A:

Wavelength λ

• Wavelength, λ:

• Frequency, f or ω:

Wave speed, v:

Types of Waves

- There are three general types of mechanical waves:
 - Transverse particle motion is perpendicular to wave motion.
 - Longitudinal particle motion is in the same direction as wave motion.
 - Combined sea waves.

<u>CAUTION</u> Wave motion vs. particle motion Don't confuse the motion of the *transverse* wave along the string and the motion of a particle of the string. The wave moves with constant speed v along the length of the string, while the motion of the particle is simple harmonic and *transverse* (perpendicular) to the length of the string.

Transverse Waves

 Particle motion is perpendicular to wave motion.

 Notice that it takes one period of time for the wave to move one wavelength in distance:

$$v = \frac{\lambda}{T} = f \lambda = 2\pi f \frac{\lambda}{2\pi} = \frac{\omega}{k}$$
$$\omega = 2\pi f, \quad k = \frac{2\pi}{\lambda}$$

Each point moves up and down in place. Particles one wavelength apart move in phase with each other.

Longitudinal Waves

 Particle motion is in the same direction as wave motion.

 Again, notice that it takes one period of time for the wave to move one wavelength in distance:

$$v = \frac{\lambda}{T} = f\lambda = 2\pi f \frac{\lambda}{2\pi} = \frac{\omega}{k}$$
$$\omega = 2\pi f, \quad k = \frac{2\pi}{\lambda}$$

Combined Waves

• Water waves...

Combined Waves

Water waves...

Which way are the waves moving? It is important to differentiate wave and particle motion!!!

2-Dimensional Waves

• Waves can, of course, move in more than one

dimension:

2-Dimensional Waves

• Waves can, of course move in more than one dimension:

Diffraction!!!

Periodic vs. Non-periodic Waves

Periodic means that it repeats itself:

• Non-periodic can be, e.g., a pulse:

©2002, Dan Russell

Displacement for a fixed position as a function of time:

$$y(x=0,t) = A\cos(\omega t)$$
$$\omega = \frac{2\pi}{T} = 2\pi f$$

Displacement for a fixed time as a function of position:

$$y(x,t=0) = A\cos(kx)$$
 Or, in this case, sin(kx)

$$k = \frac{2\pi}{\lambda}$$

We can put these together:

$$y(x,t) = A\sin(kx - \omega t)$$
$$k = \frac{2\pi}{\lambda}, \quad \omega = \frac{2\pi}{T}, \quad v = \frac{\omega}{k}$$

What is A? k? ω ? v?

Look at just one point at a time on the medium:

Wave travelling to the left

$$Z(x,t) = 1.5 + A\cos(kx + \omega t)$$

What is A? k? ω ? v?

$$k = \frac{2\pi}{\lambda}, \quad \omega = \frac{2\pi}{T}, \quad v = \frac{\omega}{k}$$

How fast is the wave moving?

$$y(x,t) = 0 = A\cos(kx - \omega t) \Rightarrow$$

$$kx - \omega t = \frac{\pi}{2} \Rightarrow$$

$$x = \frac{\pi}{2k} + \frac{\omega}{k} t \Rightarrow$$

$$v = \frac{dx}{dt} = 0 + \frac{\omega}{k} = \frac{\omega}{k} = \frac{2\pi f}{\frac{2\pi}{k}} = f\lambda$$

$$v_p = f\lambda = \frac{\omega}{k}$$

This is known as the phase velocity, for reasons that will become clearer later.