Characteristics of “Waves”

- Amplitude, A:

- Wavelength, λ:

- Frequency, f or ω:

- Wave speed, v:
Types of Waves

• There are three general types of mechanical waves:
 – Transverse – particle motion is perpendicular to wave motion.
 – Longitudinal – particle motion is in the same direction as wave motion.
 – Combined – sea waves.

CAUTION Wave motion vs. particle motion Don’t confuse the motion of the transverse wave along the string and the motion of a particle of the string. The wave moves with constant speed \(v \) along the length of the string, while the motion of the particle is simple harmonic and transverse (perpendicular) to the length of the string.
Transverse Waves

- Particle motion is perpendicular to wave motion.

- Notice that it takes one period of time for the wave to move one wavelength in distance:

\[v = \frac{\lambda}{T} = f \lambda = 2\pi f \frac{\lambda}{2\pi} = \frac{\omega}{k} \]

\[\omega = 2\pi f, \quad k = \frac{2\pi}{\lambda} \]
Longitudinal Waves

• Particle motion is in the same direction as wave motion.

• Again, notice that it takes one period of time for the wave to move one wavelength in distance:

\[v = \frac{\lambda}{T} = f \lambda = 2\pi f \frac{\lambda}{2\pi} = \frac{\omega}{k} \]

\[\omega = 2\pi f, \quad k = \frac{2\pi}{\lambda} \]
Combined Waves

• Water waves...
Combined Waves

• Water waves...

Which way are the waves moving?
It is important to differentiate wave and particle motion!!!
2-Dimensional Waves

• Waves can, of course, move in more than one dimension:
2-Dimensional Waves

• Waves can, of course move in more than one dimension:

Diffraction!!!
Periodic vs. Non-periodic Waves

• Periodic means that it repeats itself:

• Non-periodic can be, e.g., a pulse:
• Displacement for a fixed position as a function of time:

\[y(x = 0, t) = A \cos(\omega t) \]

\[\omega = \frac{2\pi}{T} = 2\pi f \]
Periodic Wave Description

- Displacement for a fixed time as a function of position:

\[y(x, t = 0) = A \cos(kx) \quad \text{Or, in this case, } \sin(kx) \]

\[k = \frac{2\pi}{\lambda} \]
Periodic Wave Description

- We can put these together:

\[y(x, t) = A \sin(kx - \omega t) \]

\[k = \frac{2\pi}{\lambda}, \quad \omega = \frac{2\pi}{T}, \quad v = \frac{\omega}{k} \]

What is A? k? ω? v?
Periodic Wave Description

- Look at just one point at a time on the medium:

\[
y(x = 2.5, t) = \cos(\omega t + \phi) \\
y(x = 2.9, t) = \cos(\omega t - \delta \phi + \phi) \\
y(x = 3.3, t) = \cos(\omega t - 2\delta \phi + \phi) \\
y(x = 2.5 + \lambda, t) = \cos(\omega t - 2\pi + \phi)
\]
Periodic Wave Description

Wave travelling to the left

\[Z(x, t) = 1.5 + A \cos(kx + \omega t) \]

What is \(A \), \(k \), \(\omega \), \(v \)?

\[k = \frac{2\pi}{\lambda}, \quad \omega = \frac{2\pi}{T}, \quad v = \frac{\omega}{k} \]
Periodic Wave Description

• How fast is the wave moving?

\[y(x,t) = 0 = A \cos(kx - \omega t) \]

\[kx - \omega t = \frac{\pi}{2} \Rightarrow \]

\[x = \frac{\pi}{2k} + \frac{\omega}{k} t \Rightarrow \]

\[v = \frac{dx}{dt} = 0 + \frac{\omega}{k} = \frac{\omega}{k} = \frac{2\pi f}{\lambda} = f \lambda \]

\[v_p = f \lambda = \frac{\omega}{k} \]

This is known as the phase velocity, for reasons that will become clearer later.