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Reduced Mass

• OK, so the Bohr model of the atom gives energy levels:

• But, this has one problem – it was developed assuming the acceleration of 
the electron was given as an object revolving around a fixed point.

• In fact, the proton is also free to move.
• The acceleration of the electron must then take this into account.
• Since we know from Newton’s third law that:

• If we want to relate the real acceleration of the electron to the force on 
the electron, we have to take into account the motion of the proton too.



Reduced Mass

• So, the relative acceleration of the electron to the proton is just:

• Then, the force relation becomes:

• And the energy levels become:



Reduced Mass

• The reduced mass is close to the electron mass, but the 0.0054% 
difference is measurable in hydrogen and important in the energy levels of 
muonium (a hydrogen atom with a muon instead of an electron) since the 
muon mass is 200 times heavier than the electron.

• Or, in general:



Hydrogen-like atoms

• For single electron atoms with more than one 
proton in the nucleus, we can use the Bohr 
energy levels with a minor change: e4 → Z2e4.

• For instance, for He+ ,



Uncertainty Revisited

• Let’s go back to the wave function for a 
travelling plane wave:

• Notice that we derived an uncertainty 
relationship between k and x that ended being 
an uncertainty relation between p and x (since 
p=ћk): 



Uncertainty Revisited

• Well it turns out that the same relation holds 
for ω and t, and therefore for E and t:

• We see this playing an important role in the 
lifetime of excited states.

• Each state has a 
characteristic width in 
energy, inversely 
proportional to how long it 
takes to de-excite.



Problems for Bohr Model

• There were many problems with the semi-classical model of 
Bohr:
– He quantized orbital angular momentum, and an electron with 

orbital motion would produce a magnetic dipole moment, BUT 
hydrogen in its ground state doesn’t have a magnetic dipole 
moment.

– It couldn’t be extended to multi-electron atoms.
– Since the electrons moved in circular orbits (say in the x-y plane 

at z = 0), then they also had no momentum in z.  This didn’t obey 
the uncertainty principle in the z-dimension.

• We need a more comprehensive model of the atom, and for 
that we need to understand the consequences of matter 
waves more thoroughly.

• This was the goal of Erwin Schrodinger in 1926.



Schrödinger’s Wave Equation

• If particles behave as waves, they must then 
have an associated wave equation (like light or 
a guitar string).

• In a paper published in 1923, Erwin 
Schrödinger developed such an equation using 
the following reasoning:
– He started by examining plane waves, whose 

wave function would be:



Some Mathematics

• If you haven’t worked with imaginary numbers before (or maybe even if 
you have), some of what we are going to cover will seem strange.

• First, we define i, as the square root of -1.
• Then, we have (the Maclaurin series expansion):

• So that our free particle wave function is just a combination of cos 
and sin functions with both a real part and imaginary part. 



WHY???
• But why introduce complex numbers???
• Here is a hand waving answer:

– We want the wave nature of the particle when we are dealing with its wave properties (like 
interference, etc.).

– But we don’t want the wiggles in the wave function when we want to deal with it’s particle 
nature.

• Let’s look again at the free particle wave function, and define the probability 
distribution of finding it (detection is a particle aspect) within a region dx at time t as 
the square of its wave function:

• See? No wiggles, and uniformly distributed in space (since it has a definite 
momentum).

• What would we have gotten without the complex wave function?



Wave Packets
• The same is true for a wave 

packet.

• The particle’s wave nature is 
encoded in the 
wavefunction’s real and 
imaginary parts, but the 
complex conjugate squared 
is real, and has the type of 
probability distribution that 
we are looking for!



Interpretation of the Wave Function
• Here, we need to spend a minute talking about what the wave 

function is.
• As I said on the previous slide, the probability distribution is given 

by:

• This means if you want to know the probability of finding the 
particle at a certain point in time and over a certain range in 
space, you have to integrate the probability distribution over that 
range:

• Then, an additional condition on the wave function is that the 
total probability of finding the particle over all space must be = 1:

• Note that the free particle wave function is non-normalizable!  
Need to use wave packets.



Schrödinger’s Wave Equation

• OK, we start with the free particle (plane wave) wave function

• Now, we notice that for the E&M and matter wave equations, 
there are derivatives with respect to position and time involved.

• Let’s take the first spatial derivative of the wave function and see 
what we have:

• OK, now let’s define the momentum operator such that when it 
operates on the wave function, it gives us back the momentum 
times the wave function:



Schrödinger’s Wave Equation

• And now we do the same thing only taking the first time derivative 
of the wave function:

• And we see that we can define an energy operator in the same 
way:



Schrödinger’s Wave Equation

• And now we just state conservation of energy using our new operators 
and the wave function:

Schrödinger’s Wave Equation



Schrödinger’s Wave Equation
in 1D

• If motion is restricted to one-dimension, the del operator can just 
be replaced by the partial derivative in one dimension:

• And then the wave function, of course, is also just a function of 
one dimension:

• Now, this solution works for when V(x) = 0 everywhere (FREE 
PARTICLE SOLUTION), but fails when not.  However, when the 
solution has a definite energy, the general form is:



Time Independent Schrödinger’s 
Wave Equation

• Plugging this into the 1D Schrödinger’s equation gives:

• And we can divide both sides of the equation by the time dependent part 
to get:

• This is called the time-independent (1D) Schrödinger’s equation, which we 
can use to solve for the position dependence of the wave function.

• One must remember though, that the full wave function needs the time 
dependent part put back in:



Example



Example


