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Clicker Question

• Are you here?
– A) Yes

– B) No

– C) I don’t know

– D) I’m both here and not here (superposition 
state)

– E) What does here actually mean?



Units in Special Relativity

• It is useful to use a special set of units in Special 
Relativity, known as SR units.

• The only difference is the unit of distance – 
instead of measuring distance in meters, one 
measures in the amount of time it takes light to 
travel a distance.

• So, the unit of distance is the second (or year, or 
hour, or…).

• You probably have heard distance quoted in 
terms of light-years (especially in astronomy).

• We will leave off the term “light-” and just refer 
to distance in units of time.



SR Unit Conversion

• If you want to convert from a distance in SR units to a 
distance in SI units, you have to use the conversion 
factor:

• Or, the inverse conversion:

• So, for instance, the distance between the earth and the 
sun, D[m]

SI
 = 1.4960×1011 m:

• Or, 1 m to SR units:



SR Unit Conversion
• What are the SI units for energy?

• Note that in SR units, mass and energy have the 
same units…

• What about momentum?

• Also has the same units…



SR Unit Conversion
• What is the value of the speed of light in SR units?

• No units!
• In fact, all velocities in SR units are unit-less.
• Let’s say something is going 1.49896249e+8m/s,
• How fast is it going in SR units?

– A: 0.5

• All velocities of objects are just fractions of the 
speed of light (and always <1)!



Spacetime Diagrams

• Okay, now that we have our units for spatial 
distances and time, we want to introduce 
another tool – the spacetime diagram.

• You will find this extremely useful, IF you 
understand how to set it up and use it…

• We will begin with spacetime diagrams in 
general, and then consider spacetime diagrams 
for two different frames in Galilean Relativity, 
and then consider spacetime diagrams for two 
different frames in Special Relativity.



Spacetime Diagrams

• So, I will start off by drawing a 
basic spacetime diagram, using SR 
units.

• Since the spatial axis is in units of 
seconds (light-seconds, the 
distance light travels in one 
second), the yellow line represents 
the path travelled by a light beam 
emitted from the origin (x=0 and 
t=0).

• Note that when t is 1 s, the light 
beam will have gone one 
light-second, or just second in SR 
units.

• Then, events can be drawn on this 
diagram…

"Minkowski diagram - photon" by Minkowski_diagram_-_photon.png: Wolfgangbeyerderivative work: Duschi (talk) - 
Minkowski_diagram_-_photon.png. Licensed under CC BY-SA 3.0 via Commons - 
https://commons.wikimedia.org/wiki/File:Minkowski_diagram_-_photon.svg#/media/File:Minkowski_diagram_-_photon.svg
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Events in Spacetime Diagrams

• Then one can read off 
the spacetime 
coordinates of an event 
directly.

"Minkowski diagram - photon" by Minkowski_diagram_-_photon.png: Wolfgangbeyerderivative work: Duschi (talk) - 
Minkowski_diagram_-_photon.png. Licensed under CC BY-SA 3.0 via Commons - 
https://commons.wikimedia.org/wiki/File:Minkowski_diagram_-_photon.svg#/media/File:Minkowski_diagram_-_photon.svg
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Worldlines

• For a moving particle, we can 
make a series of events that 
represent its position at different 
times.

• For infinitely small time 
differences, these become lines 
known as “worldlines”.

• Note that vertical lines represent 
an object at rest in this frame, i.e., 
v=0.

• The slope of the line, Δt/ Δx, is the 
inverse of the velocity.

• I.e., a horizontal line has a slope of 
zero, but “infinite velocity”.

• We won’t see any horizontal 
worldlines…



Spacetime Diagrams

• Now, let’s say that our x-t 
frame is fixed to a train 
station, and at t=0, the end 
of a (very fast) train passes 
by (at constant velocity).

• At the back of a train, a 
light blinks every so often.

• What do the events look 
like in our station frame?

• If the light was blinking at a 
very fast rate, we would 
get the worldline of the 
back of the train…



Two-frame Spacetime Diagrams

• Now, what if we want to draw 
the reference frame that is fixed 
on the back of the train, on the 
SAME diagram?

• Several things to note here:
– The moving frame is no longer 

orthogonal, but this is no 
problem, since it is in it’s own 
frame.

– In Galilean Relativity, the x and 
the x’ axes are the same.

– Remember what the axis 
represents, the zero of the other 
axis – no matter where you are in 
x (or x’), t=0 is the same time 
everywhere (in Galilean 
Relativity).

X’



Two-frame Spacetime Diagrams

• Now, what if we want to draw an 
event on the spacetime diagram?  

• How do we read the spacetime 
coordinates for both frames?

• Especially note that to read x’ you 
have to go down to the x’ axis 
PARALLEL to the t’ axis!!

• Otherwise you are just reading x…
• Also Note: The scale on the t’ axis is 

not the same as the scale on the t 
axis!

• t
A
 = t’

 A
 , so the t’ axis must have a 

different scale…
• Note that this is still Galilean 

relativity, so the fact that the axes 
have different scales is not a SR 
effect.
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Three Definitions of Time Intervals

• Coordinate Time
– The time difference, Δt, between two 

events as measured by two synchronized 
clocks within one inertial reference frame.

• Proper Time
– The time difference, Δτ, between two 

events as measured by a single clock which 
is present at both events. 

• Spacetime Interval
– The time difference, Δs, between two 

events as measured by a single inertial 
clock present at both events.

• We will study each of these in turn and 
discover that they are very different.
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Coordinate Time
• Coordinate time is just the time difference between two events (one might, or might 

not occur at t = 0) as measured in one particular inertial frame.
• Let’s consider a particular case: a moving train has a radar system located in the 

center of the train.
• It fires out two light beams at t’ = 0, one towards the front, and one towards the 

rear.
• In the t’ frame, since light moves at velocity c, the events that mark the arrival of the 

light beam at the front (Event B) and rear (Event A) of the train happen at the same 
coordinate time (relative to the origin).

• The Coordinate Time for these events is Δt’ = 0 in the train frame.
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"Traincar Relativity1" by User:Acdx - Self-made, based on 
Image:TruckFrame.png. Licensed under GFDL via Commons - 
https://commons.wikimedia.org/wiki/File:Traincar_Relativity1.svg#/media/File:Tra
incar_Relativity1.svg



Coordinate Time is Frame Dependent
• Now, let’s look at the same set of events in the frame of the train station.
• Since light travels at v = c in the x-t frame also, the worldlines of the 

flashes are still at 45 degrees in that frame (v=1), but the worldlines of the 
train (rear, center and front) are now tilted…

• So, in the x-t frame, the events that correspond to the intersection of the 
worldlines of the front and rear of the train with the worldlines of the light 
rays no longer have the same coordinate time!

• The Coordinate Time for these events is Δt ≠ 0 in the station frame.
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"Traincar Relativity2" by User:Acdx - Self-made, based on 
Image:TruckSidewalkFrame.png. Licensed under GFDL via Commons - 
https://commons.wikimedia.org/wiki/File:Traincar_Relativity2.svg#/media/
File:Traincar_Relativity2.svg



Simultaneity in the Moving Frame
• Now, if we want to represent an axis for the moving frame which 

represents simultaneous events in that frame, we now have two events 
which do exactly that!

• These events occur at the same time in the primed frame, so the line that 
connects them represents a set of events all with the same time.

• A line parallel to this line, but passing through the origin would then 
represent all events with t’ = 0 – the x’ axis.
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Two-Frame Graphs

• Now, we have the beginnings of a graphical way to see the 
relationship between spacetime coordinates as measured in one 
frame and spacetime coordinates as measured in another (both 
inertial!).

• We still need to determine what the relative scales are for the 
primed frame, since, as we have seen, they may not be the same 
as the unprimed frame.
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Coordinate Time is Frame 
Dependent

• But, even without knowing the scales, we can see that the idea of 
simultaneity is now frame dependent.

• In fact, events that happen in one order in one frame can happen 
in the opposite order in another!

"Relativity of Simultaneity Animation" by 
User:Acdx - Self-made, based on 
Image:Relativity_of_Simultaneity.svg, 
source code: 
en:User:Acdx/Relativity_of_Simultaneity_
Animation. Licensed under GFDL via 
Commons - 
https://commons.wikimedia.org/wiki/File:R
elativity_of_Simultaneity_Animation.gif#/
media/File:Relativity_of_Simultaneity_Ani
mation.gif



Proper Time
• Another way to measure the time difference between two 

events is to take the same clock to both events – the proper 
time, Δτ.

• Since observers in both frame can “see” the clock face 
when it is at both events, this type of time difference should 
be frame independent.

• However, there is a problem with Proper Time…
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Proper Time
• Let’s say that we have an event, Event A, somewhere on the earth’s surface, call it 

the origin of the Home Frame.
• At a later time, but at the same place, we have another event, Event B.
• Let’s consider two clocks:
• One which stays at x = 0 in the Home frame.

– That clock will be at both events, and observers in both frames can read the face and get 
the proper time from that (stationary) clock.

• Another clock moves from Event A along some path (in x) and then arrives back at x 
= 0 to coincide with Event B.
– That clock will also be at both events, and observers in both frames can read the face and 

get the proper time from that (moving) clock.
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Proper Time is Path Dependent
• However, even though both frames agree on the Proper 

time given by each clock, the two answers from the two 
clocks will NOT necessarily be the same!

• This is analogous to the question of how far is it to Santa Fe 
from Albuquerque – the answer depends on the path!
– (more on this in a bit)

• I chose the wording of the example for a reason…
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Example 
(https://en.wikipedia.org/wiki/Hafele%E2%80%93Keating_experiment)

• The Hafele–Keating experiment was a test of the theory of relativity. In October 
1971, Joseph C. Hafele, a physicist, and Richard E. Keating, an astronomer, took four 
cesium-beam atomic clocks aboard commercial airliners. They flew twice around the 
world, first eastward, then westward, and compared the clocks against others that 
remained at the United States Naval Observatory. When reunited, the three sets of 
clocks were found to disagree with one another, and their differences were 
consistent with the predictions of special and general relativity.

• The results were published in Science in 1972:[1][2]

• The published outcome of the experiment was consistent with special and general 
relativity. The observed time gains and losses were different from zero to a high 
degree of confidence, and were in agreement with relativistic predictions to within 
the ~10% precision of the experiment.

nanoseconds gained
predicted

measuredgravitational(g
eneral 

relativity)

kinematic(spe
cial relativity) total

eastward 144±14 −184 ± 18 −40 ± 23 −59 ± 10
westward 179±18 96±10 275±21 273±7

https://en.wikipedia.org/wiki/Hafele%E2%80%93Keating_experiment
https://en.wikipedia.org/wiki/Theory_of_relativity
https://en.wikipedia.org/wiki/Joseph_C._Hafele
https://en.wikipedia.org/wiki/Richard_E._Keating
https://en.wikipedia.org/wiki/Atomic_clock
https://en.wikipedia.org/wiki/United_States_Naval_Observatory
https://en.wikipedia.org/wiki/Science_(journal)
https://en.wikipedia.org/wiki/Hafele%E2%80%93Keating_experiment#cite_note-1
https://en.wikipedia.org/wiki/Hafele%E2%80%93Keating_experiment#cite_note-2
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/Special_relativity


Spacetime Interval
• So, is there no time interval that we can agree on that is not dependent on 

frame or path?
• Yes, it is called the spacetime interval, and it is the time difference, Δs, as 

measured by an inertial clock that is present at both events.
• Notice that only the first clock in our previous example is an inertial clock.
• In fact, between any two events, there is only one path that represents an 

inertial clock path: a straight-line path between the events – straight lines 
represent constant velocity. 
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Geometry Analogy

• Here is an analogy to common geometry which 
you may or may not find useful.

• What is the coordinate differences between 
Albuquerque and Santa Fe?

x
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Geometry Analogy

• What about now?
• The coordinates (or coordinate differences) are relative to 

the choice of coordinate axes.
• These are analogous then to the Coordinate Time in SR.
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Geometry Analogy

• What about the path length from Albuquerque to Santa Fe?
• That depends on the path you take!
• But each path length doesn’t depend on what coordinate 

system you use.
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Geometry Analogy

• What if you took a straight-line path?
• That distance is unique, and also doesn’t depend on the 

coordinate system.
• There is something REAL about that, it doesn’t depend on how 

you measure it!
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Geometry Analogy

Plane Geometry Spacetime Geometry

Map ↔ Spacetime diagram

Points ↔ Events

Paths ↔ Worldlines

Coordinate systems ↔ Inertial reference frames

Relative rotation of coordinate Systems ↔ Relative velocity of inertial ref. frames

Differences between coordinate values ↔ Differences of spacetime coordinates

Path length along a path ↔ Proper Time along a worldline

Distance between points ↔ Spacetime interval between two events


