Lecture 2
 (Simple Harmonic Motion)

Physics 2310-01 Spring 2020
Douglas Fields

Simple Harmonic Motion

- A type of periodic motion with a very explicit definition:
- Motion about an equilibrium point with a restoring force proportional to the distance away from the equilibrium point.

Simple Harmonic Motion

$$
F_{N e t}=-k x
$$

Simple Harmonic Motion

- Analyze: $\quad F=-k x \Rightarrow$

$$
m a=-k x \Rightarrow
$$

$$
m \frac{d^{2} x}{d t^{2}}=-k x \Rightarrow
$$

Definition of acceleration

$$
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
$$

Divide both sides by m

- Differential equation relating the changing acceleration to the position.
- Try non-periodic solutions:

$$
\begin{gathered}
x(t)=C \Rightarrow \frac{d^{2} x}{d t^{2}}=0 \neq-\frac{k}{m} x(t) \text { unless } C=0 \\
x(t)=e^{\sqrt{\frac{k}{m}}} \Rightarrow \frac{d x}{d t}=\sqrt{\frac{k}{m}} e^{\sqrt{\frac{k}{m}} t} \Rightarrow \frac{d^{2} x}{d t^{2}}=\frac{k}{m} e^{\sqrt{\frac{k}{m}} t} \neq-\frac{k}{m} e^{\sqrt{\frac{k}{m}} t}
\end{gathered}
$$

Simple Harmonic Motion

- Try a periodic solution:

$$
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
$$

$$
\begin{aligned}
& x(t)=\cos (c t) \Rightarrow \frac{d x}{d t}=-c \sin (c t) \Rightarrow \frac{d^{2} x}{d t^{2}}=-c^{2} \cos (c t)=-\frac{k}{m} \cos (c t) \\
& \text { if } c^{2}=\frac{k}{m}
\end{aligned}
$$

- The general solution is:

$$
x(t)=A \cos \left(\sqrt{\frac{k}{m}} t+\phi\right)
$$

or, equivalently,
$x(t)=B \cos \left(\sqrt{\frac{k}{m}} t\right)+C \sin \left(\sqrt{\frac{k}{m}} t\right)-x_{\max }=-A-$

Phase

Note that the functions sin and cos repeat every 2π. The argument of these functions is called the phase.

Simple Harmonic Motion

- The phase constant determines the value of x at $\mathrm{t}=0$:
$x(t)=A \cos (\omega t+\phi), \quad \omega=\sqrt{\frac{k}{m}}$
These three curves show SHM with
the same period T and amplitude A but with different phase angles ϕ.

$\phi=$ phase angle that cycle is moved to left
$=2 \pi \times$ fraction of period moved to left

Phase Constant

What if we want a sine function, but would like it to start at $1 / 4 \pi$ instead of zero?

What if we want a sine function, but would like it to start at $-1 / 4 \pi$ instead of zero?
$y=1 \cdot \sin \left(x+\frac{1}{4} \pi\right)$

Simple Harmonic Motion

- The factor in front of time sets the (angular) frequency of oscillations, so:

$$
x(t)=A \cos \left(\sqrt{\frac{k}{m}} t+\phi\right)=A \cos (\omega t+\phi), \quad \omega=\sqrt{\frac{k}{m}}
$$

(a) Increasing m; same A and k

Mass m increases from curve
1 to 2 to 3 . Increasing m alone
x increases the period.

(b) Increasing k; same A and m Force constant k increases from curve 1 to 2 to 3 . Increasing k alone

For $\varphi=0$
(c) Increasing A; same k and m Amplitude A increases from curve 1 to 2 to 3 . Changing A alone has

Frequency, Angular Frequency and Period

- There is sometimes confusion about these quantities.

$$
x(t)=A \cos (\omega t+\phi), \quad \omega=\sqrt{\frac{k}{m}}
$$

- ω is called the angular frequency.
- The function $\mathrm{x}(\mathrm{t})$ returns to its starting point when $\omega t=2 \pi$, so the period (amount of time to complete one cycle), is:

$$
T=\frac{2 \pi}{\omega}
$$

- The frequency (number of cycles per second) is just:

$$
f=\frac{1}{T}=\frac{\omega}{2 \pi} \Rightarrow \omega=2 \pi f
$$

Position, Velocity and Acceleration

(a) Displacement x as a function of time t

- We can differentiate to get the velocity

$$
\begin{aligned}
& x(t)=A \cos (\omega t+\phi) \Rightarrow \\
& v(t)=\frac{d x(t)}{d t}=-\omega A \sin (\omega t+\phi)
\end{aligned}
$$

- And again to get acceleration

$$
\begin{aligned}
& v(t)=-\omega A \sin (\omega t+\phi) \Rightarrow \\
& a(t)=\frac{d v(t)}{d t}=-\omega^{2} A \cos (\omega t+\phi)
\end{aligned}
$$

(b) Velocity v_{x} as a function of time t

- Note that:
$a(t)=-\omega^{2} A \cos (\omega t+\phi)=-\omega^{2} x(t)=-\frac{k}{m} x(t)=$
$m a(t)=-k x(t)$

Energy in Simple Harmonic Motion

- Without any other forces (friction), we can describe the energy of a spring-mass system by the kinetic energy:

$$
\begin{aligned}
K E & =\frac{1}{2} m v^{2}(t)=\frac{1}{2} m \omega^{2} A^{2} \sin ^{2}(\omega t+\phi) \\
& =\frac{1}{2} m\left(\sqrt{\frac{k}{m}}\right)^{2} A^{2} \sin ^{2}(\omega t+\phi)=\frac{1}{2} k A^{2} \sin ^{2}(\omega t+\phi)
\end{aligned}
$$

- And the potential energy is:

$$
U_{e l}=\frac{1}{2} k x^{2}(t)=\frac{1}{2} k A^{2} \cos ^{2}(\omega t+\phi)
$$

Energy in Simple Harmonic Motion

- So, the total energy is the sum of these:

$$
\begin{aligned}
E_{\text {total }} & =K E+U_{e l}=\frac{1}{2} k A^{2} \sin ^{2}(\omega t+\phi)+\frac{1}{2} k A^{2} \cos ^{2}(\omega t+\phi) \\
& =\frac{1}{2} k A^{2}\left(\sin ^{2}(\omega t+\phi)+\cos ^{2}(\omega t+\phi)\right) \\
& =\frac{1}{2} k A^{2}
\end{aligned}
$$

- But there is no time dependence here conservation of energy!

Energy in Simple Harmonic Motion

No gravity...

The Simple Pendulum

For small θ :

The $\sin \theta$ small angle approximation

- Taylor expansion around $\theta=0$:

$$
\sin \theta=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \theta^{2 n+1}=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{\prime}}{7!}+\cdots
$$

- Or, just examine the graph near $\theta=0$:

The Simple Pendulum

For small θ :
$F_{x}=-m g \sin \theta=-m g \theta$

Arc length

- For a circle of radius r, the circumference is $2 \pi r$.
- Notice that the angle all the way around a circle is 2π angle.
- For an arc, subtending an angle θ, the arc length is just the same fraction of the circumference as the angle is to 2π :

$$
s=2 \pi r \cdot \frac{\theta}{2 \pi}=r \theta
$$

The Simple Pendulum

$$
F_{x}=-m g \sin \theta
$$

For small θ :

$$
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{\frac{m g}{\ell}}{m}}=\sqrt{\frac{g}{\ell}}
$$

$$
F_{x}=-m g \sin \theta=-m g \theta=-m g \frac{S}{\ell}
$$

$$
F_{x}=-\frac{m g}{\ell} s=-k s, \quad k=\frac{m g}{\ell}
$$

Same form as mass-spring!

$$
\begin{aligned}
& f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{g}{\ell}} \\
& T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\ell}{g}}
\end{aligned}
$$

Torsion Pendulum

- Torsion spring applies a torque that is proportional to the angular displacement:

$$
\tau \propto-\theta \Rightarrow \tau=-\kappa \theta
$$

- From the rotational version of Newton's second law:

$$
\begin{aligned}
\sum \tau & =I \alpha=I \frac{d^{2} \theta}{d t^{2}} \Rightarrow \\
-\kappa \theta & =I \frac{d^{2} \theta}{d t^{2}} \Rightarrow \\
\frac{d^{2} \theta}{d t^{2}} & =-\frac{\kappa}{I} \theta
\end{aligned}
$$

The spring torque τ_{z} opposes the angular displacement θ.

Torsion Pendulum

- But this is the same differential equation we had for a linear mass-spring system!
$\frac{d^{2} \theta}{d t^{2}}=-\frac{\kappa}{I} \theta \longleftrightarrow \frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x$
- So, it has the same solutions:

The spring torque τ_{z} opposes
the angular displacement θ.

$$
\theta(t)=\Theta \cos (\omega t+\phi), \quad \omega=\sqrt{\frac{\kappa}{I}}
$$

Problem 13.36

13.36. A thin metal disk with mass $2.00 \times 10^{-3} \mathrm{~kg}$ and radius 2.20 cm is attached at its center to a long fiber (Fig. 13.32). The disk, when twisted and released, oscillates with a period of 1.00 s . Find the torsion constant of the fiber.

