41.58. **Identify and Set Up:** \(L_x^2 + L_y^2 + L_z^2 = L^2 \). \(L^2 = l(l+1)\hbar^2 \). \(L_z = m_l\hbar \).

Execute:
(a) \(L_x^2 + L_y^2 = L^2 - L_z^2 = l(l+1)\hbar^2 - m_l^2\hbar^2 \) so \(\sqrt{L_x^2 + L_y^2} = \sqrt{l(l+1) - m_l^2} \).

(b) This is the magnitude of the component of angular momentum perpendicular to the z-axis.

(c) The maximum value is \(\sqrt{l(l+1)\hbar} = L \), when \(m_l = 0 \). That is, if the electron is known to have no z-component of angular momentum, the angular momentum must be perpendicular to the z-axis. The minimum is \(\sqrt{l\hbar} \) when \(m_l = \pm l \).

Evaluate: For \(l \neq 0 \) the minimum value of \(L_x^2 + L_y^2 \) is not zero. The angular momentum vector cannot be totally aligned along the z-axis. For \(l \neq 0 \), \(\vec{L} \) must always have a component perpendicular to the z-axis.