36 AC Circuits

36.1 AC Sources and Phasors

1. The figure shows emf phasors A, B, and C.
 a. What is the instantaneous value of the emf? "\(r \)\"x\(r \)xis \(r \)\ol{c} of \(r \)\.
 \[\text{A} \quad \text{B} \quad \text{C} \]
 \[\begin{array}{c}
 60 \sqrt{ } & -100 \sqrt{ } & 80 \sqrt{ } \\
 \end{array} \]
 b. At this instant, is the magnitude of the emf increasing, decreasing, or holding constant?
 \[\text{A} \quad \text{B} \quad \text{C} \]
 \[\text{dec.} \quad \text{dec.} \quad \text{inc.} \]

2. Draw a phasor diagram for the following emfs.
 a. \((100 \text{V}) \cos \omega t\) at \(\omega t = 240^\circ\)
 b. \((400 \text{V}) \cos \omega t\) at \(t = \frac{1}{3}T\)
 c. \((200 \text{V}) \cos \omega t\) at \(t = 0\)

3. The current phasor is shown for a 10 Ω resistor.
 a. What is the instantaneous resistor voltage \(v_R\)?
 \[i = -4A \quad V = iR = 40 \text{V} \]
 b. What is the peak resistor voltage \(V_R\)?
 \[i_p = 5A \quad V = iR = 50 \text{V} \]
4. The peak current through a resistor is 4.0 A. What is the peak current if:
 a. The resistance R is doubled?
 \[I = \frac{V}{R} \quad R \uparrow 2x \quad I \uparrow 2x \]
 \(2 \text{ A} \)

 b. The peak emf ε_0 is doubled?
 \[I \uparrow 2x. \]
 \(8 \text{ A} \)

 c. The frequency ω is doubled?
 \[(4 \text{ A}) \quad \text{No effect}. \]

36.2 Capacitor Circuits

5. The peak current through a capacitor is 4.0 A. What is the peak current if:
 a. The peak emf ε_0 is doubled?
 \[V = \frac{1}{2x} \quad X_C = \frac{1}{\omega C} \quad \varepsilon_0 = \frac{1}{\omega C} \quad \varepsilon \uparrow 2x \quad I \uparrow 2x \]
 \(8 \text{ A} \)

 b. The capacitance C is doubled?
 \[C \uparrow 2x \Rightarrow I \uparrow 2x. \]
 \(8 \text{ A} \)

 c. The frequency ω is doubled?
 \[\omega \uparrow 2x \Rightarrow I \uparrow 2x \]
 \(8 \text{ A} \)

6. Current and voltage graphs are shown for a capacitor circuit with $\omega = 1000 \text{ rad/s}$.
 a. What is the capacitive reactance X_C?
 \[V = \frac{1}{X_C} \quad X_C = \frac{10V}{10 \text{ mA}} = 1 \text{ k} \Omega. \]

 b. What is the capacitance C?
 \[X_C = \frac{1}{\omega C} = 1 \text{ k} \Omega \]
 \[C = 10^{-6} \text{ F} = 1 \mu\text{F} \]
7. A 13 μF capacitor is connected to a 5.5 V/250 Hz oscillator. What is the instantaneous capacitor current \(i_C \) when \(E = -5.5 \) V?

[Diagram showing capacitor and waveforms]

\[\text{Leading 90° out of phase, so } i = 0 ! \]

8. Consider these three circuits.

[Diagram showing three circuits with labeled capacitances]

Rank in order, from largest to smallest, the peak currents \((I_C)_1\) to \((I_C)_3\) provided by the emf.

Order: 3, 1, 2

Explanation:

9. Consider these four circuits.

[Diagram showing four circuits with labeled frequencies and capacitances]

Rank in order, from largest to smallest, the capacitive reactances \((X_C)_1\) to \((X_C)_4\).

Order: 2, 1 = 3, 4

Explanation:

\[X_C = \frac{1}{\omega C} \]
36.4 Inductor Circuits

14. The peak current passing through an inductor is 4.0 A. What is the peak current if:
 a. The peak emf \mathcal{E}_0 is doubled?
 \[V = I \omega L \]
 b. The inductance L is doubled?
 \[V = I \omega L \]
 c. The frequency ω is doubled?
 \[V = I \omega L \]

15. Current and voltage graphs are shown for an inductor circuit with $\omega = 1000$ rad/s.
 a. What is the inductive reactance X_L?
 \[X_L = \frac{V}{I} = \frac{10 \text{ V}}{10 \text{ mA}} = 1 \text{ k}\Omega \]
 b. What is the inductance L?
 \[X_L = \omega L = 1000 \text{ rad/s} \cdot L \]
 \[L = \frac{X_L}{\omega} = \frac{1 \text{ k}\Omega}{1000 \text{ rad/s}} = 1 \text{ H} \]

16. Consider these four circuits.

 \[\begin{array}{cccc}
 \text{1} & \text{2} & \text{3} & \text{4} \\
 \text{100 Hz} & \text{100 Hz} & \text{50 Hz} & \text{200 Hz} \\
 \mathcal{E}_0 & \mathcal{E}_0 & \mathcal{E}_0 & \mathcal{E}_0 \\
 2 \mu\text{H} & 1 \mu\text{H} & 4 \mu\text{H} & 2 \mu\text{H} \\
 \end{array} \]

 Rank in order, from largest to smallest, the inductive reactances $(X_L)_1$ to $(X_L)_4$.

 Order: \(4, 1, 3, 2 \)

 Explanation:
 \[X_L = \omega L \].
36.5 The Series RLC Circuit

17. The resonance frequency of a series RLC circuit is 1000 Hz. What is the resonance frequency if:
 a. The resistance R is doubled?
 $\omega_0 = \frac{1}{\sqrt{LC}}$

 b. The inductance L is doubled?

 c. The capacitance C is doubled?

 d. The peak emf ε_0 is doubled?

 e. The frequency ω is doubled?

18. For these combinations of resistance and reactance, is a series RLC circuit in resonance (Yes or No)? Does the current lead the emf, lag the emf, or is it in phase with the emf?

<table>
<thead>
<tr>
<th>R</th>
<th>X_L</th>
<th>X_C</th>
<th>Resonance?</th>
<th>Current?</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Ω</td>
<td>100 Ω</td>
<td>50 Ω</td>
<td>No</td>
<td>i lag, L dominates</td>
</tr>
<tr>
<td>100 Ω</td>
<td>50 Ω</td>
<td>100 Ω</td>
<td>No</td>
<td>i lead, C dominates</td>
</tr>
<tr>
<td>100 Ω</td>
<td>75 Ω</td>
<td>75 Ω</td>
<td>Yes</td>
<td>in phase</td>
</tr>
</tbody>
</table>

19. In this series RLC circuit, is the emf frequency less than, equal to, or greater than the resonance frequency ω_0? Explain.

$\sqrt{\text{leads } i}$, $\underline{\text{inductor dominates}}$

ω_L is "too big"

$\omega > \omega_0$
20. The resonance frequency of a series RLC circuit is greater than the emf frequency. Does the current lead or lag the emf? Explain.

\[\omega_L \text{ is too small } (\omega < \omega_0) \]

\[\frac{1}{\omega C} \text{ is too big. } C \text{ decreases } V \text{ lag } i. \]

\[i \text{ leads } V, \text{ or } \mathcal{E} \]

21. Consider these four circuits. They all have the same resonance frequency \(\omega_0 \).

Rank in order, from largest to smallest, the maximum currents (\(I_{\text{max}} \)) of (1) to (4).

Order: 4, 1, 2, 3

Explanation:

Smaller \(R \), \(i \)

22. The current in a series RLC circuit lags the emf by 20°. You cannot change the emf. What two different things could you do to the circuit that would increase the power delivered to the circuit by the emf?

Voltage leads \(i \), \(\text{inductor dominates} \)

You could decrease \(L \)

or decrease \(C \)
36.6 Power in AC Circuits

23. An average power dissipated by a resistor is 4.0 W. What is \(P_{\text{avg}} \) if:
 a. The resistance \(R \) is doubled?
 \[
 P = \frac{V^2}{R} \quad R \uparrow 2 \times, \quad P \downarrow 2 \times \quad (2 \text{W})
 \]
 b. The peak emf \(E_0 \) is doubled?
 \[
 V \uparrow 2 \times, \quad V \uparrow 4 \times, \quad P \uparrow 4 \times \quad (16 \text{W})
 \]
 c. Both are doubled simultaneously?
 \[
 (8 \text{W})
 \]

24. Consider these three circuits.

Rank in order, from largest to smallest, the average powers \(P_1 \) to \(P_3 \) delivered by the three emfs.

Order: \(3, 1, 2 \)
Explanation: