Electrostatics (all source charges are stationary)

→ Coulomb's law and the principle of linear superposition form the basis for electrostatics

When 2 charges are stationary with respect to each other, then in the reference frame in which they are at rest, the force on \(q_1 \) due to \(q_2 \) is:

\[
\vec{F}_1 = \frac{q_1 q_2 \hat{R}}{4\pi\varepsilon_0 R^2}
\]

where

\[
\hat{R} = \frac{\vec{r}_1 - \vec{r}_2}{|\vec{r}_1 - \vec{r}_2|}
\]

\(\hat{R} \) is the unit vector from \(\vec{r}_2 \) to \(\vec{r}_1 \)

\(\vec{r} = \vec{r}_1 - \vec{r}_2 \) is the separation vector

and that on \(q_2 \) due to \(q_1 \) is

\[
\vec{F}_2 = -\vec{F}_1 = \frac{-q_1 q_2 \hat{R}}{4\pi\varepsilon_0 R^2}
\]

\(\varepsilon_0 \) is the electric permittivity of the free space [SI units]

\[
\varepsilon_0 = 8.85 \times 10^{-12} \frac{\text{F}}{\text{m}}
\]

\(F \rightarrow \text{Farad (capacitance)} \)

\(C \rightarrow \text{coulomb (charge)} \)

\(V \rightarrow \text{volt (electric potential)} \)

\(q_1, q_2 \); charges in C

\[
\begin{align*}
\varepsilon & = \frac{C}{V \cdot m} \\
\nu & = \frac{V}{c} \\
J & = \frac{c}{N \cdot \text{m}^2}
\end{align*}
\]
When a collection of charges, all at rest, are present then the force on the \(i \)-th charge is given by the linear superposition of the Coulomb forces on it due to each of the other charges:

\[
\vec{F}_i = \frac{q_i}{4\pi\varepsilon_0} \sum_{j\neq i} \frac{q_j}{r_{ij}^3} (\vec{r}_{ij})
\]

\[
= \frac{q_i}{4\pi\varepsilon_0} \sum_{j\neq i} \frac{q_j \hat{R}_{ij}}{R_{ij}} \quad \hat{R}_{ij} = \vec{r}_{ij} - \vec{r}_j
\quad R_{ij} = |\vec{r}_{ij} - \vec{r}_j|
\]

"vector addition"

Example:

The principle of superposition seems "obvious" but what if the force were proportional to

\[q^2 \Rightarrow (q+q_2)^2 \neq q^2 + q_2^2 \]

Diagram:

\[
\vec{F}_a = \frac{q_1}{4\pi\varepsilon_0} \left(\frac{\hat{e}_1}{(a^2+\delta^2)} \right) + \frac{q_2}{4\pi\varepsilon_0} \left(\frac{\hat{e}_2}{(a^2+\delta^2)} \right)
\]

\[
\hat{e}_1 = \frac{a}{(a^2+\delta^2)^{1/2}} \hat{x} + \frac{\delta}{(a^2+\delta^2)^{1/2}} \hat{y} = \cos \theta \hat{x} + \sin \theta \hat{y}
\]

\[
\hat{e}_2 = \frac{a}{(a^2+\delta^2)^{1/2}} \hat{x} - \frac{\delta}{(a^2+\delta^2)^{1/2}} \hat{y} = \cos \theta \hat{x} - \sin \theta \hat{y}
\]

then:

\[
\vec{F}_a = \frac{q_1}{4\pi\varepsilon_0} \left(\frac{1}{(d^2+\delta^2)} \right) \left[\cos \theta \hat{x} + \sin \theta \hat{y} + \cos \theta \hat{x} - \sin \theta \hat{y} \right]
\]

\[
\vec{F}_a = \frac{2q_1}{4\pi\varepsilon_0} \frac{\cos \theta \hat{x}}{d^2+a^2} = \frac{2q_1}{4\pi\varepsilon_0} \frac{a}{(d^2+a^2)^{3/2}} \hat{x}
\]
Electric Field

→ Provides a convenient description for electric force whenever arbitrary distributions of source charges contribute to the total electric force on a given ("test") charge

\[\vec{F}_i = q_i \frac{1}{4\pi \varepsilon_0} \sum \frac{q_j \, \hat{R}_{ij}}{R_{ij}^2} = q_i \, \vec{E}_i(\vec{r}_i) \]

\[\vec{E}_i = \frac{\vec{F}_i}{q_i} \]

i.e. the electric force on any charge may alternatively be expressed as the charge times the electric field, the latter given by the principle of superposition as

\[\vec{E}(\vec{r}) = \frac{1}{4\pi \varepsilon_0} \sum \frac{q_j \, \hat{R}_j}{R_j^2} \text{ where } \hat{R}_j = \vec{r} - \vec{r}_j \]

Note that by writing the electric field at a position \(\vec{r} \) rather than at the location of a charge \(\vec{r}_i \), we have given the \(\vec{E} \) field a continuum field character.

Note that while this was not entirely necessary here, this extension becomes crucial from a physical point of view. Indeed, both \(\vec{E} \) and the magnetic field, that we will discuss later, become physical entities that can carry energy, momentum, angular momentum and other attributes of a physical system.
due to a continuous charge distribution

If there are infinitely many point charges, each of vanishing magnitude in a region of space, so a certain finite amount of charge is contained in a unit volume of space, then one has the notion of a continuous charge distribution with a (volume) charge density, \(\rho \),

\[
\rho(\vec{r}') = \lim_{\Delta V \to 0} \frac{\Delta Q}{\Delta V}
\]

So the total charge in an infinitesimal volume \(dV \) at position \(\vec{r}' \) is

\[
dQ = \rho(\vec{r}') \, dV
\]

So

\[
\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_j \frac{Q_j \vec{r}_j}{R_j^3} \implies \frac{1}{4\pi\varepsilon_0} \int dV' \rho(\vec{r}') \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}
\]

unit vector

"Beware of vector superposition works with Cartesian components"

Sometimes we will use \(d\vec{r}' \) instead of \(dV' \).
Example (Problem 2.5 of the main text)

Find the electric field at a distance h above the center of a circular loop of radius a that carries a uniform line charge λ.

Note that the electric field of any element $d\vec{e}$ has components in the xy plane that exactly cancel those from a corresponding element $-d\vec{e}$ in the diametrically opposite location on the loop. Therefore, the net field is going to be directed along the z-axis.

Since the inclination angle θ of the $(\vec{r}-\vec{r}')$ separation vector is the same for all elements $d\vec{e}$ and the distance $|\vec{r}-\vec{r}'|$ is also the same, the total field at distance h along the z-axis is

$$\vec{E} = E_z \hat{z}$$

where

$$E_z = \frac{1}{4\pi \varepsilon_0} \frac{\cos \theta}{a^2 + h^2}$$

E_z is the field due to a single element $d\vec{e}$.

The total charge dq is

$$dq = \lambda \cdot d\vec{e}$$

and the radial distance r is

$$r^2 = a^2 + h^2$$

The field due to the entire line charge is then

$$\vec{E} = \frac{\lambda a}{2\varepsilon_0} \frac{h}{(a^2 + h^2)^{3/2}} \hat{z}$$
Surface and line charge density

\[\sigma(\vec{r}') : \text{surface charge per unit area at } \vec{r}' \text{ of a 2D surface} \]

\[\lambda(\vec{r}'): \text{charge per unit length at } \vec{r}' \text{ on a linear charge distribution} \]

\[
\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma(\vec{r}') (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \, d\vec{r}'
\]

\[
\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda(\vec{r}') (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \, d\ell'
\]

Example (2.5) alternative cartesian-components approach

From the formula for \(\vec{E} \) for a line-charge distribution with \(\lambda(\vec{r}') = \lambda \) we have

\[
\vec{E}(\vec{r}) = \frac{\lambda}{4\pi\varepsilon_0} \int \frac{d\vec{r}'}{|\vec{r} - \vec{r}'|^3} \]

but as previously argued, the \(x \) and \(y \) components of the field must vanish on the \(z \)-axis due to symmetry.

Then:

\[
\vec{r}' = (0,0,h) \]

\[
1 - |\vec{r} - \vec{r}'|^2 = (x^2 + y^2 + h^2)^{3/2} = (a^2 + h^2)^{3/2}
\]

\(a^2 \) since \((x',y') \) is on a circle of radius \(a \).

Then, we have for the non-zero \(z \) component of \(\vec{E} \)

\[
\vec{E}(\vec{r}) = \hat{z} E_z(0,0,h)
\]

\[
= \frac{\lambda}{4\pi\varepsilon_0} \int_0^{2\pi} \frac{h}{(a^2 + h^2)^{3/2}} \, d\phi' = \frac{\lambda h}{4\pi\varepsilon_0} \frac{1}{(a^2 + h^2)^{3/2}} \int_0^{2\pi} \frac{d\phi'}{(a^2 + h^2)^{3/2}}
\]

\[
= \frac{\lambda}{4\pi\varepsilon_0} \frac{h}{(a^2 + h^2)^{3/2}} \int_0^{2\pi} \frac{d\phi'}{(a^2 + h^2)^{3/2}} = \frac{\lambda}{2\pi\varepsilon_0} \frac{h}{(a^2 + h^2)^{3/2}} \]

\[J = 38 \]
Notes
(1) Always decompose the vector integrand into its Cartesian components
(2) Integrate each Cartesian component of the vector integrand separately and then assemble results together for the final \(\vec{E} \) field.

Example (Problem 2.7 of the main text).
Find the electric field a distance \(z \) from the center of a spherical surface of radius \(R \) that carries a uniform charge density \(\sigma \). Treat the case \(z < R \) (inside) as well as \(z > R \) (outside). Express your answers in terms of the total charge \(q \) on the sphere.

Hint: Use the law of cosines to write \(r \) in terms of \(R \) and \(\theta \), be sure to take the positive square root \(\sqrt{R^2 + z^2 - 2Rz \cos \theta} \) if \(R > z \) but \((R-z) \) if \(R < z \).

Again due to symmetry reasons, the electric field is directed along \(\hat{z} \) axis. The other components vanish.

\[
\vec{E}(\vec{r}) = \frac{\hat{z}}{4\pi \varepsilon_0} \sigma \int_{\text{sphere}} \frac{d\vec{a}'(z-z')}{1 - \vec{r} \cdot \vec{r}'} \quad \vec{r} = (0,0,h) \\
\vec{r}' = (x,y,z)
\]

\[
z - z' = h - z' = h - a \cos \theta' \\
|\vec{r} - \vec{r}'|^2 = (\vec{r} - \vec{r}') \cdot (\vec{r} - \vec{r}') = \\
= \hat{r} \cdot \hat{r}' + \hat{r}' \cdot \hat{r} - 2 \hat{r} \cdot \hat{r}' = \\
= h^2 + a^2 - 2ha \cos \theta'
\]

while \(d\vec{a}' = a^2 \sin \theta' d\theta' d\phi' \)
Then:

\[\tilde{E}(\tilde{r}) = E_0 \sum_{\lambda} \frac{\mathcal{S}}{4\pi\epsilon_0} a^2 \int_0^{\pi} \sin \theta' \, d\phi' \int_0^{2\pi} \frac{h - a\cos \theta'}{(h^2 + a^2 - 2ah\cos \theta')^{3/2}} \, d\phi' \]

- Since the integrand has no \(\theta' \) dependence \(\int_0^{2\pi} d\phi' = 2\pi \)
- We can set \(\cos \theta' = \mu \) as new integration variable and therefore \(d\mu = -\sin \theta' \, d\theta' \)

So

\[\tilde{E}(\tilde{r}) = E_0 \sum_{\lambda} \frac{\mathcal{S}}{2\pi\epsilon_0} a^2 \int_{-1}^{1} (-d\mu) \frac{h - a\mu}{(h^2 + a^2 - 2ah\mu)^{3/2}} \]

Notice that the integrand is a ratio of powers of quantities linear in \(\mu \), so can be easily integrated

Let \(h^2 + a^2 - 2ah\mu = u \) \(\Rightarrow \mu = \frac{h^2 + a^2 - u}{2ah} \) \(\Rightarrow d\mu = -\frac{du}{2ah} \)

Then

\[I = \int_{-1}^{1} \frac{d\mu}{(h^2 + a^2 - 2ah\mu)^{3/2}} = \int_{-1}^{1} \frac{d\mu}{u^{3/2}} = \int_{-1}^{1} \frac{d\mu}{(h - a\mu)^{3/2}} \]

\[= \frac{1}{2ah} \int_{-1}^{1} \frac{du}{(h - a\mu)^{3/2}} \frac{h - a^2/2h + u^{3/2}}{u^{3/2}} = \frac{1}{2ah} \int_{-1}^{1} \frac{du}{(h - a\mu)^{1/2}} \frac{h - a^2/2h + u^{3/2}}{u^{1/2}} \]

\[= \frac{1}{2ah} \left[\frac{h - a^2/2h}{-2u^{1/2}} \right]_{1-h/2}^{1+h/2} + \frac{1}{2ah} \left[2u^{1/2} \right]_{1-h/2}^{1+h/2} \]

\[= \frac{1}{4ah^3} (h^2 - a^2) \left[1 - \frac{1}{1+h} \right] + \frac{1}{2ah^3} \left[1 - \frac{1}{h} \right] \]

\[= \frac{1}{2ah^3} (h^2 - a^2) \left[1 - \frac{1}{1+h} \right] + \frac{1}{2ah^3} \left[1 - \frac{1}{h} \right] \]
For \(h > a \)
\[
\begin{align*}
1h-a1 &= h-a \\
1h+a1 &= h+a \\
I &= \frac{1}{2\pi h^2} \left[\frac{(h+a)(h-a)}{h-a} - \frac{(h-a)(h-a)}{h+a} \right] + \frac{1}{2\pi h^2} \left[h+a - h+a \right] \\
&= \frac{1}{2\pi h^2} \left[h+a - h+a \right] + \frac{1}{2\pi h^2} \left[h+a - a h \right] \\
&= \frac{1}{a h} + \frac{1}{a h} = \frac{2}{a h} \\
\text{then} \quad \overrightarrow{E}(\vec{r}) &= \hat{z} \frac{5}{2\pi \varepsilon_0} \frac{2a^2}{h^2} = \hat{z} \frac{5}{2\pi \varepsilon_0} \frac{a^2}{h^2} \quad \text{for} \ h > a
\end{align*}
\]

For \(h < a \)
\[
\begin{align*}
1h-a1 &= a-h \\
1h+a1 &= a+h \\
I &= \frac{1}{2\pi h^2} \left[-\frac{(h-a)(a-h)}{a-h} + \frac{(h+a)(a-h)}{a+h} \right] + \frac{1}{2\pi h^2} \left[h+a - (a-h) \right] \\
&= \frac{1}{2\pi h^2} \left[-h-a + a-h \right] + \frac{1}{2\pi h^2} \left[h+a - a + h \right] \\
&= \frac{-1}{a h} + \frac{1}{a h} = 0 \\
\text{Then:} \quad \overrightarrow{E}(\vec{r}) &= 0 \quad \text{for} \ h < a
\end{align*}
\]

We could have guessed this result using Gauss’s law
\[
\oint_S \overrightarrow{E} \cdot d\vec{a} = \frac{Q_{\text{enc}}}{\varepsilon_0}
\]

Since \(Q_{\text{enc}} = 0 \) for \(h < a \) \(\Rightarrow \overrightarrow{E} = 0 \)