1. A sphere of radius R carries a charge density $\rho(r) = kr$ (where k is a constant). Find the energy of the configuration. Check your answer by calculating it in at least two different ways.

2. Consider three different charges with values: $+2q$, $+q$, and $-q$ placed in three different configurations

(a) $+2q$ $+q$ $-q$
(b) $-q$ $+2q$ $+q$
(c) $+q$ $-q$ $+2q$

Which of the three configurations has the minimum energy?

3. Two spherical cavities, of radii a and b, are hollowed out from the interior of a (neutral) conducting sphere of radius R (see the figure). At the center of each cavity a point charge is placed (q_a and q_b).

(a) Find the surface charge densities σ_a, σ_b, and σ_R
(b) What is the field outside the conducting sphere?
(c) What is the field in each cavity?
(d) What is the force on q_a and q_b?
(e) Which of these answers would change if a third charge q_c were brought near the conducting sphere?
4. On a disk of radius a and thickness e, such as $e \ll a$ (see the figure), there is a constant charge density ρ. Find the electric potential and the electric field at the point P located a distance z above the center of the disk. Also, calculate the work needed to move a charge Q from infinity to point P.

5. A point charge q is at the center of an uncharged spherical conducting shell of inner radius a and outer radius b. How much work would it take to move the charge out to infinity (thorough a tiny hole drilled in the shell)?