1. An infinite coaxial cable carries a uniform volume charge density ρ in the inner cylinder of radius a and a uniform surface charge density σ on the outer cylindrical shell of radius b. This surface density σ is negative and is of just the right magnitude that the cable as a whole is electrically neutral.
 (a) Which is the value of σ in terms of ρ?
 (b) Find the electric field everywhere.

2. Find the electric field inside a sphere that carries a charge density proportional to the distance from the origin $\rho = kr$, where k is a constant.

3. In its ground state, the electron of a hydrogen atom is described by the wavefunction $\psi = e^{-r/a}/\sqrt{\pi a^3}$, so the associated charge density can be written as $\rho = -e|\psi|^2$, being e the electron charge and $a = 0.053$ nm the Bohr radius. Find the total charge of the distribution ρ, and the electric field everywhere.

4. Two spheres, each of radius R and carrying uniform volume charge densities $+\rho$ and $-\rho$, respectively, are placed so that they partially overlap. Call the vector from the positive center to the negative center \vec{d}. Show that the field in the region of overlap is constant, and find its value.

5. One of the following vector functions cannot represent an electrostatic field. Which one?

 \[\vec{E} = k[xy \hat{x} + 2yz \hat{y} + 3xz \hat{z}] \]
 \[\vec{E} = k[y^2 \hat{x} + (2xy + z^2) \hat{y} + 2yz \hat{z}] \]