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Decay of Coherent Scalar Field Oscillations: Two Approaches

By

Kyle J. Ritchie

Abstract

The decay of coherent scalar field oscillations is thought to be an important mecha-

nism for standard model particle production in the early universe. Because of this, it is

important to understand where different computational approaches for studying decay

agree and disagree. We show that for two simple theories involving coherent oscilla-

tions, when the time-scale of the energy transfer is much larger than the time-scale of

the coherent oscillations, the scalar field may be approximated as a collection of quanta,

and standard S-matrix techniques become applicable. We show this explicitly to first

order by comparing the standard particle-decay results with those obtained from a

classical background approach. We argue that for sufficiently weak interactions, and

sufficiently slow energy transfer rates, equality holds at all orders. Further, we argue

that when interactions are strong, the energy transfer rate can become fast, and the

coherent oscillations must be treated using classical background methods.
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1 Introduction

1.1 Background

Scalar fields play an important role in many areas of modern physics. Such spin-0 fields are

used to describe the Higg’s field in the standard model of particle physics, they appear as the

super-partners of quarks and leptons in supersymmetric extensions of the standard model,

and they arise in the context of string theory as moduli which determine the geometry of

extra spatial dimensions. Here, we take our primary motivation from coherently oscillating

scalar fields which arise in the context of early-universe cosmology. By coherent oscillations

we simply refer to oscillations of wavenumber zero; As a simple example, this can occur when

electromagnetic waves oscillate at plasma frequency.

When scalar fields are displaced during inflation (for example, the inflaton), as the

universe expands very rapidly, the length scale of the displacements becomes extremely

large. When this happens, the displacements can be regarded as approximately uniform

over large spatial regions (i.e. coherence). This can result in coherent oscillations which

interact with the standard model fields and decay rapidly into standard model particles. An

important example is the decay of the inflaton field, which is thought to be responsible for

the creation of matter and anti-matter in the universe.

1.2 Computational Approaches

Standard computational approaches for analyzing quantum field decay often rely on the use

of asymptotic particle states, and study their interactions via the S-matrix [1]. This approach

requires that energy transfer processes occur very slowly with respect to the relevant time

scales of the system. Such techniques may be inadequate for studying the decay of coherent

scalar field oscillations, since the rate of energy transfer can become fast relative to the

frequency of field oscillations, due to the coherence of the field.

In order to treat the problem more accurately, one desires an approach which utilizes the

time-dependent Hamiltonian interaction between the oscillating scalar field and the Standard

Model fields. The elementary treatment is one in which the oscillating scalar field is regarded
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as a classical background field which induces time-dependent Hamiltonian interactions. As

an example, for a coherently oscillating field φ of mass mφ, the oscillations

φ(t) = φ0 cos(mφt) (1)

can induce interaction terms in the Hamiltonian of the form

gφ2(t)χ2, fφ(t)χ3, σφ(t)χψψ, · · · , etc. (2)

where χ and ψ denote some standard model spin-0 bosons or spin-1/2 fermions, respectively,

and where the coupling constants g, f , σ, etc. determine the strength of the interactions.

In each case, we can regard the products gφ2(t), fφ(t), σφ(t), etc. as constituting time-

dependent couplings.

In such cases, to study the rate of particle production we calculate the vacuum excitation

amplitudes using the propagator induced by the time-dependent Hamiltonian interaction

Hint(t). For example, with Hint(t) = gφ(t)χ3, we may be interested in the vacuum excitation

amplitude

lim
T→∞
〈χχχ|U(T,−T )|0〉 = lim

T→∞
〈χχχ| exp

{∫ T

−T
dt

∫
d3xHint(t)

}
|0〉 (3)

However, when the rate of energy transfer Γ is sufficiently slow, it is reasonable to expect

that we may work in the Born-Oppenheimer approximation [2] with Γ << mφ, and average

over the fast φ(t) oscillations to obtain a scalar field φ which behaves like a collection of

quanta, so that its interaction with SM fields can be modeled approximately using standard

S-matrix techniques. It has been shown, however, that for some simple interactions like

Lint = −fφψψ − (gφ+ hφ2)χ2 (4)

this ‘particle picture’ is not adequate for computing the rate of ψ and χ production [3]. The

reason for this is twofold: For quadratic interactions of this nature, the particle picture does

not account for the phenomenon of parametric resonance, which yields higher production

rates for particles near the mass of φ. Furthermore, in the case of broad parametric resonance
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[4], production of χ particles becomes very rapid, occurring on time scales much smaller than

the time-scale of φ oscillations. As a consequence, the approximation Γ << mφ is violated,

and the standard particle approach is insufficient.

In what follows, we investigate the adequacy of the standard particle approach in dif-

ferent physical limits for some simple theories. In chapter two we consider the interaction

Hint = gφχ3, and compare the classical background computational approach with the S-

matrix ‘particle approach’ in the limit of fast oscillation and small coupling. In chapter

three we study these two approaches for a fermionic interaction Hint = σφχψψ in the same

limits. Finally, we conclude in chapter 4 by discussion higher order processes, and by deter-

mining the physical limits in which the particle approximation becomes inadequate.

2 The φχ3 Interaction

We begin by considering the system of interacting scalar fields φ and χ described by the

Lagrangian density

L =
1

2
(∂φ)2 − 1

2
m2
φφ

2 +
1

2
(∂χ)2 − 1

2
mχχ

2 − gφχ3 + · · · (5)

with interaction terms Lint = −gφχ3 + · · · . In general, we must include higher order in-

teractions, e.g a χ4 term, to ensure that the interaction potential is bounded below, and

hence ensure the existence of a ground state. This will not affect the results our of present

calculations.

We begin this section by studying the interaction Lint from the particle perspective,

whereby we will work in the Born-Oppenheimer approximation, i.e. the limit of fast oscilla-

tions (Γ << mφ), and regard φ as a quantum field amenable to a standard S-matrix treat-

ment. In particular, we will calculate the decay rate for the first order process φ→ χ+χ+χ.

Next, we will use the classical background approach, regarding φ as a fully time-dependent

field φ = φ(t), and calculate the amplitude for vacuum excitation to a state of three χ

quanta. We conclude by showing that the classical background results reduce to the particle

approach results in the limit mφ >> Γ.
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2.1 The Particle Approximation

Here, we assume that φ behaves as a collection of quanta of mass mφ, at rest. These

quanta are constructed, for example, from averaging over the fast oscillations of a scalar

field φ = φ0 cos(mφt). We wish to find the rate of particle production in the limit of small

coupling g through the first order process depicted in figure 1.

Figure 1: First order process in φχ4 interaction.

We find from Fermi’s golden rule [1] that in the rest frame of the φ field, the differential

decay rate is given by

dΓ =
1

2mφ

(
3∏
i=1

d3pi
(2π)32Ei

)
|M|2(2π)4δ(4)(p0 −

3∑
i=1

pi) (6)

where M denotes the amplitude for the first order process. For this simple process we have

thatM = ig. After integrating over the angular components of the particle phase space (see

appendix A.1 for details) we find that the differential decay rate dΓ can be written in Dalitz

coordiates [5] as

dΓ =
|M|2

32m3
φ(2π)3

dm2
12dm

2
13 =

g

32m3
φ(2π)3

dm2
12dm

2
13 (7)

with mij defined by

m2
ij ≡ (pi + pj)

2 (8)

The region of integration, known as the Dalitz plot, is given in figure 2 below:

In general,there is no closed form for Γχ, but in the limit of massless identical χ particles,
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Figure 2: Dalitz plot. Produced from [5]

i.e. mχ = 0, the Dalitz plot reduces to the lower-triangular region described by

m2
13−max = m2

φ −m2
12 (9)

m2
13−min = 0 (10)

In this case, performing the integral yields the final result

Γχ =
3g2mφ

32(2π)3
, (mχ = 0) (11)

where we have included an extra factor 6 due to symmetry in the case of identical mass-less

particles.

2.2 The Classical Background Approach

We now consider the system described by the Lagrangian density

L =
1

2
(∂φ)2 − 1

2
m2
φφ

2 +
1

2
(∂χ)2 − 1

2
mχχ

2 − gφ(t)χ3 + · · · (12)
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where φ(t) = φ0 cos(mφt) describes a coherently oscillating scalar field. As before, we must

include a χ4 term to ensure the existence of a ground state, but this won’t affect our calcu-

lations.

We are interested in finding the amplitude for vacuum excitation in the form of three χ

particles in the limit of small coupling g. We will assume that the time scale of the energy

transfer is ∆T = 2T , beginning at time −T and completing at time T . That is, we wish to

compute the amplitude

M = 〈p1p2p3| exp

{∫ T

−T
dt

∫
d3xHint(t)

}
|0〉 (13)

= 〈p1p2p3|
∫ T

−T
dt

∫
d3x gφ(t)χ3(x)|0〉+ · · · (14)

= igφ0

∫ T

−T
dt

∫
d3x〈p1p2p3| cos(mφt)χ

3(x)|0〉+ · · · (15)

We find (see appendix B.1 for details) that upon expanding the field χ(x), performing

the integration over the time interval ∆T , and utilizing a few computational tricks, that the

square of the amplitude is given by

|M|2 = g2φ2
0

[
sin2 ((E1 + E2 + E3 −mφ)T )

(E1 + E2 + E3 −mφ)2
+

sin2 ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3 +mφ)2

+ 2
sin ((E1 + E2 + E3 −mφ)T ) sin ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3)2 −m2
φ

]
× V × (2π)3δ(3)(p1 + p2 + p3) (16)

where V denotes the volume of phase space being integrated over. Let us denote the quantity

in brackets by
[
· · ·
]

=: S, and each of its terms by S−, S+, and S±, respectively, to emphasize

the differing signs carried by mφ in the respective arguments of the sine functions.

Using our expression for the squared amplitude |M|2, the differential probability for the

process to occur in the volume of momentum phase space centered at p1, p2, p3 is:

dP =

(
3∏
i=1

d3pi
(2π)32Ei

)
g2φ2

0 × S × V × (2π)3δ(3)(p1 + p2 + p3) (17)

10



Now, taking note of the field density equation ρ = m2
φφ

2
0 we obtain the number density

nφ =
N

V
=

ρ

mφ

= mφφ
2
0 (18)

With N ≡ 1 for decay of a single φ(t) quanta, we can use φ2
0 = 1

mφV
to write the propbability

as

dP =
1

mφ

(
3∏
i=1

d3pi
(2π)32Ei

)
g2 × S × (2π)3δ(3)(p1 + p2 + p3) (19)

Or, since the interaction occurs over a time period ∆T , the differential excitation rate is

dΓ =
dP

∆T
=

1

∆Tmφ

(
3∏
i=1

d3pi
(2π)32Ei

)
g2 × S × (2π)3δ(3)(p1 + p2 + p3) (20)

We wish to show that in the limit as the time-scale of the energy transfer ∆T is large with

respect to the time-scale of φ oscillations, i.e. ∆T >> 1/mφ, Γ reduces to the expression

found in the S-matrix approach. Recalling the results from section 2.1, we see that the above

expression agrees with the ‘particle picture’ differential decay rate (6) (with |M|2 = g2) if

and only if S reduces to the delta function (π∆T )δ(E1 +E2 +E3 −mφ). We will show that

this is precisely the case when ∆T >> 1/mφ. First, consider the leading term S−. We may

rewrite this as

S− =

(
∆T

2

)2
sin2 [(E1 + E2 + E3 −mφ)T ]

[(E1 + E2 + E3 −mφ)T ]2
(21)

where ∆T = 2T is the duration of the interaction. Observe that this behaves like the function

sin2(x)/x2 with x = (E1 +E2 +E3−mφ)T . A plot of this function is given in figure 3 below:

We see that S− as a function of energy is peaked near E1 +E2 +E3 = mφ with amplitude

(∆T/2)2 and width ∼ 2π/T = 4π/∆T . Thus, in the limit as ∆T >> 1
mφ

, the amplitude

of the peak at E1 + E2 + E3 = mφ approaches infinity, and the width of the peak vanishes.

Moreover, the area under S− scales like (∆T
2

)2 × 4π
∆T

= π∆T , and hence S− approaches a

delta function (π∆T )δ(E1 + E2 + E3 −mφ).

Now consider the second term S+. A similar result holds: This term approaches the

delta function (π∆T )δ(E1 +E2 +E3 +mφ). Now, of course, Ei > 0 and mφ > 0, so that this

delta function vanishes under the integral. Finally, consider the third sinusoidal term. Each
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Figure 3: Plot of sin2(x)/x2.

of the two sinusoids in S± is peaked at height ∼ ∆T when their respective arguments are

near zero. However, each factor is significantly suppressed by the other, since their peaks

peaks do not overlap. Thus, even near E1 + E2 + E3 = mφ, this term is negligible in the

∆T >> 1/mφ limit.

Hence, in the ∆T >> 1/mφ limit, S = S− + S+ + S± reduces to the desired delta-

function (π∆T )δ(E1 + E2 + E3 − mφ), and hence the expression for the differential decay

rate becomes

dΓ =
1

2mφ

(
3∏
i=1

d3pi
(2π)32Ei

)
× g2 × (2π)4δ(4)(p1 + p2 + p3 − p0), ∆T >>

1

mφ

(22)

Comparing with equation (6), we see that with ∆T >> mφ,

Γbackground = Γparticle (23)

As a final important remark, recall from equation (11) that in the particle picture we

found Γ ∝ g2mφ. The limit of small coupling g2 << 1 in the particle picture is therfore

consistent with the Born-Oppenheimer approximation (wherein the time-scale of the energy

transfer ∆T ∼ 1/Γ is much less than time-scale of oscillations, i.e. Γ << mφ) utilized in

averaging over fast φ(t) oscillations. This provides further evidence that for small coupling,

the condition Γ << mφ is sufficient to ensure that the particle approximation is adequate.
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3 The φχψψ Interaction

Having shown the agreement between the particle picture and the classical background pic-

ture in the Born-Oppenheimer approximation and small coupling limit for the φχ3 theory,

we now turn to the fermionic interaction in the system described by the Lagrangian density

L =
1

2
(∂φ)2 − 1

2
m2
φφ

2 +
1

2
(∂χ)2 − 1

2
mχχ

2 − σφχψψ + · · · (24)

where φ and χ are again two real scalar fields, and ψ is a spin-1
2

field. We begin by working in

the particle picture to calculate the decay rate for the first-order process φ→ χ+ψ+ψ in the

interaction Lint = −σφχψψ. Next, we use the classical background approach to calculate the

rate of vacuum excitation to a state consisting of one χ quanta, and a fermion-antifermion

pair ψ + ψ. We conclude by showing that the two results agree in the Born-Oppenheimer

approximation.

3.1 The Particle Approximation

We again begin by supposing that we are working in the limit where the rate of energy

transfer is must slower than the rate of oscillations in the coherently oscillating field φ(t),

allowing us to generate the scalar field φ by averaging over the rapid oscillations. We then

proceed with the standard particle-interaction picture from standard quantum field theory.

The first order φ −→ χ + ψ̄ + ψ decay process is characterized by the Feynman diagram in

figure 4.

We find (see A.2) that after summing over the final spin states r and s of ψ and ψ, that

the square of the 1st order amplitude is

∑
r,s

|M|2 = 4σ2(p2 · p3 −m2m3) (25)

Fermi’s golden rule give’s the differential decay rate in the φ rest frame as
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Figure 4: First order process in φχψψ interaction

dΓ =
1

2mφ

(
3∏
i=1

d3pi
(2π)32Ei

)∑
r,s

|M|2(2π)4δ(4)(p0 −
3∑
i=1

pi) (26)

=
1

2mφ

(
3∏
i=1

d3pi
(2π)32Ei

)
4σ2(p2 · p3 −m2m3)(2π)4δ(4)(p0 −

3∑
i=1

pi) (27)

After simplifying the expression for the differential decay rate, we find that

dΓ = σ2 (E2 + E3)2 − E2
1 − (m2 +m3)2 +m2

1

4m0(2π)3
dE2dE3 (28)

Working again in the Dalitz coordinates defined by mij ≡ (pi + pj)
2, we find that this

integral becomes

dΓ = σ2m
2
0 +m2

1 − 2m2m3 − (m2
12 +m2

13)

16m3
0(2π)3

dm2
12dm

2
13 (29)

where the domain of integration is again as depicted in figure 2.

Again, the general integral does not have a closed form, but we may reduce to the

special case of massless products, i.e. mχ = mψ = 0, at which point the Dalitz plot again

simplifies to the triangular region described by m2
13−max = m2

0 −m2
12, m2

13−min = 0. In this

case, the differential decay rate becomes
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dΓ = σ2
m2
φ − (m2

12 +m2
13)

16m3
φ(2π)3

dm2
12dm

2
13 (30)

and performing the integration yields

Γ = σ2

(
m2
φ

16m3
φ(2π)3

m4
φ

2
− 1

16m3
φ(2π)3

m6
φ

3

)
=

σ2m3
φ

96(2π)3
(31)

3.2 The Classical Background Approach

We now turn to the interaction

L =
1

2
(∂φ)2 − 1

2
m2
φφ

2 +
1

2
(∂χ)2 − 1

2
mχχ

2 − σφ(t)χψψ + · · · (32)

where φ(t) = φ0 cos(mφt) is treated as a classical background. As was the case for the

gφ(t)χ3 interaction we wish to calculate the vacuum excitation amplitude

M = 〈p1p2p3| exp

{∫ T

−T
dt

∫
d3xHint(t)

}
|0〉

= 〈p1p2p3|
∫ T

−T
dt

∫
d3x σφ(t)χ(x)ψ(x)ψ(x)|0〉+ · · ·

= iσφ0

∫ T

−T
dt

∫
d3x〈p1p2p3| cos(mφt)χ(x)ψ(x)ψ(x)|0〉+ · · · (33)

We find upon computing the first order amplitude (details are contained in appendix

B.2), that the spin-average square of the amplitude is given by

∑
r,s

|M|2 = 4σ2φ2
0(p2 · p3 −m2m3)

[
sin2 ((E1 + E2 + E3 −mφ)T )

(E1 + E2 + E3 −mφ)2
(34)

+
sin2 ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3 +mφ)2

+ 2
sin ((E1 + E2 + E3 −mφ)T ) sin ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3)2 −m2
φ

]
× V × (2π)3δ(3)(p1 + p2 + p3) (35)
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where V is again the volume of the particle phase space, and where the bracketed quantity

is precisely the quantity S := S− + S+ + S± found for the gφχ3 interaction in section 2.2.

Because the same factor S appears here, our analysis of the ∆T >> 1/mφ limit in section

2.1 applies here, wholesale. Utilizing again the number density (18) to replace φ0, we find

that the differential decay rate dΓ = dP/∆T obtained from (34) is

dΓ =
1

2

(
3∏
i=1

d3pi
(2π)32Ei

)
4σ2φ2

0(p2 · p3 −m2m3)× S × V × (2π)3δ(3)(p1 + p2 + p3)

=
1

2mφ

(
3∏
i=1

d3pi
(2π)32Ei

)
4σ2(p2 · p3 −m2m3)|2(2π)4δ(4)(p0 −

3∑
i=1

pi) (36)

which agrees with the differential decay rate (26) from the particle approach with
∑

r,s |M|2 =

4σ2(p2 · p3 −m2m3).

Therefore, we see again that

Γbackground = Γparticle (37)

in the ∆T >> 1/mφ limit. Now, notice that from our result (31) for the particle-decay

rate, Γ ∝ σ2m3
φ = (σmφ)2mφ, so that the Born-approximation Γ << mφ is achieved when

σmφ << 1. This tells us, again, that for small coupling σ << 1/mφ, the condition Γ << mφ

ensures the particle description is adequate.

4 Discussion

4.1 Higher Order Processes

We have seen explicitly that for the gφχ3 and σφχψψ interactions, a particle treatment

is adequate for calculating the first order decay rate of coherent φ(t) oscillations in the

limit that the energy transfer rate Γ is small compared to the frequency of φ(t) oscillations

(Γ << mφ). We established this result in detail for first order processes. However, we argue

that such agreement is seen even at higher orders.
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The results of the time-dependent treatment in appendices B.1 and B.2 hint at what we

can expect from higher order calculations. Our ability to make connection with the particle

approach relies on the fact that upon integrating over φ(t), we obtain sinusoidal terms which

approach energy delta functions in the ∆T >> 1/mφ limit. We can expect that this fact

holds true to all orders, for sufficiently small g and Γ. Indeed, consider the nth order term

in the the Dyson series expansion of the propagator:

U(T,−T ) = 1 + (−i)
∫ T

−T
dt1Hint(t1) +

∫ T

−T
dt2T {Hint(t1)Hint(t2)}+ · · ·

where T denotes the time-ordering operation. Since the oscillations φ(t) are coherent, the

time-dependence resulting from φ is contained in a factor of the form

cos(mφt)× · · · × cos(mφtn)

which we may write in terms of complex exponents. When we perform the n-fold time

integrals, we are still able to isolate the time-dependence of the amplitude in a collection of

terms (like the bracketed expression denoted by S, encountered in 2.2 and 3.2) containing

sinusoids of the form

sinn (E1 + E2 + E3 ±mφ)T )

(E1 + E2 + E3 ±mφ)n
,

along with cross-terms (like S± in aforementioned sections).

It is still the case, as it was for n = 1, that these are peaked near E1 +E2 +E3 = ±mφ,

and approach energy delta functions in the limit that duration of the interaction is large:

∆T >> 1/mφ. But since Ei ≥ 0, mφ ≥ 0, the only term which survives in the T >> 1/mφ

limit is the single delta function δ(E1 +E2 +E3 −mφ). Thus, we might expect the particle

approach and classical background approaches to agree to arbitrarily high order when the

coupling is sufficiently small, and Γ is sufficiently small.
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4.2 Inadequacies of Particle Approach

Despite the expected agreement to all orders (for sufficiently small coupling, and sufficiently

fast oscillations), we expect that for strong interactions, the single-particle decay model does

not adequately describe the decay of φ(t). For strong interactions (e.g. large gφ0 in the

gφ(t)χ3 interation), the coherence of the scalar field becomes important, and we can no

longer expect it to decay as single quanta. We expect higher order processes to become

important (e.g. two φ quanta producing 4 χ quanta). As higher order processes contribute

more to the decay rate of the field, we expect that after summing over all orders, the total

decay rate becomes large, and the Born-Oppenheimer approximation Γ << mφ breaks down.

We can find estimates on the strength φ0 and number density nφ at which the Born-

Oppenheimer approximations is violated. Consider first the gφχ3 interaction in the classical

background picture. We know that the amplitude for second order processes satisfiesM(2) ∝

g2φ2
0. Hence, we expect that |M(2)|2 ∝ g4φ4

0 so that Γ(2),which carries dimensions of mass

(in natural units), must scale as

Γ(2) ∼ g4φ4
0/m

3
φ

A quick note: Here, I am using ∼ to denote proportionality by a dimensionless constant,

rather than to denote proportionality by a constant of order 1. We know, moreover, that the

first order amplitude in the classical background approach must be proportional to g2φ2
0, and

hence scales like Γ(1) ∼ g2φ2
0/mφ. Therefore, the second and first order processes contribute

comparably to Γ when

Γ(2)

Γ(1)
∼ g2φ2

0

m2
φ

& 1

(ignoring all numerical factors, which might not be of order one). Thus, with nφ = mφφ
2
0,

we see that higher order processes become significant when

φ2
0 >> m2

φ/g
2 ⇐⇒ nφ >> m3

φ/g
2 (38)

and in this limit, the Born-Oppenheimer approximation Γ << mφ is violated. Note, that
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this is again corroborated by the fact that for Γ(1) ∼ g2φ2
0/mφ, the condition Γ(1) >> mφ is

precisely (38)

Now, consider the σφχψψ interaction. Again, we have that in the classical background

picture, to first order, Γ(1) ∝ σ2φ2
0, so that, carrying dimensions of mass, Γ(1) must scale as

Γ(1) ∼ σ2φ2
0mφ

By similar reasoning, we know Γ(2) ∝ σ4φ4
0 , so that carrying dimension of mass, Γ(2)

scales like

Γ(2) ∼ σ4φ4
0mφ

Thus higher order processes become comparable when

Γ(2)

Γ(1)
∼ σ2φ2

0 & 1

Equivalently, using nφ = mφφ
2
0 again, higher order processes become significant when

φ2
0 >> 1/σ2 ⇐⇒ nφ >> mφ/σ

2 (39)

Again, this is corroborated by the fact that for Γ(1) ∼ σ2φ2
0mφ, the condition Γ >> mφ

is precisely (39).

4.3 Conclusion

We have shown that for some simple interactions, e.g. Lint = −gφχ3 and Lint = −σφχψψ,

the particle approximation is sufficient to model the decay of coherent scalar field oscillations

in the limit of weak interactions and fast oscillations - i.e. in the Born-Oppenheimer approx-

imation Γ << mφ. These conditions arises physically, for example, when φ is a modulus field

coupled gravitationally (weakly) to Standard Model fields. However, when the strength of the

interactions become large (as is the case, for example, when φ is a super-partner of quarks or

leptons), the coherence of the field becomes important, and higher order processes contribute

significantly to the energy transfer rate. In this case, the Born-Oppenheimer approximation
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is violated, as Γ becomes large. When this approximation breaks down, our justification for

averaging over φ(t) oscillations to obtain a quantum field φ, and for using standard S-matrix

techniques becomes invalid, and time-dependent methods become necessary.

Finally, it is important to note that the results obtained thus far are limited to fields

interacting in a flat Minkowski universe. In order to establish a closer connection with

inflationary cosmology, these computational approaches must be examined in an expanding

universe. In addition, coherently oscillating fields in nature are likely to contain higher

frequency modes. More realistically, in the classical background treatment, we may wish to

consider coherently oscillating scalar fields of the form φ(t) = ϕ0 +
∑∞

n=1 φ0 cos(nmφt).
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Appendices

A Decay in the Particle Approach

A.1 The φ→ χ+ χ+ χ Decay

In this section we give the details for the calculation of the φ → χ + χ + χ decay rate via

the gφχ3, outlined in section 2.1 Consider the general case of a scalar field φ of mass mφ and

four-momentum p0 decaying in to three (arbitrary) distinguishable particles of masses, m1,

m2, and m3, and four-momenta p1, p2, and p3, respectively - as depicted in figure (1). The

general expression for the decay rate differential is given by Fermi’s golden rule as

dΓ =
1

2mφ

(
3∏
i=1

d3pi
(2π)32Ei

)
|M|2(2π)4δ(4)(p0 −

3∑
i=1

pi) (40)

Integrating over d3p1 and making use of the momentum delta-function, we obtain

dΓ =
1

2mφ

d3p2 d
3p3

(2π)58E1E2E3

|M|2δ(E0 − E1 − E2 − E3)

=
|p2||p3|dE2dE3dΩ2dΩ3

16mφ(2π)5E1

|M|2δ(E0 − E1 − E2 − E3) (41)

where I have introduced d3pi = |pi|2dpidΩi, and utilized |pi|dpi = EidEi. Denote the p2

angular variables by dΩ2 = dφ2d cos θ2, and let dΩ3 = dφ3d cos θ3 denote the angles of |p3|

as measure with respect to the momentum p2. That is, p2 ·p3 = |p2||p3| cos θ3. We may then

intergrate over dΩ2, yielding a factor of 2(2π)2:

dΓ = |M|2 |p2||p3|
8mφ(2π)3E1

dE2dE3d cos θ3δ(E0 − E1 − E2 − E3) (42)

Now, note that p2
1 = (p0 − p2 − p3)2 so that in the mφ rest frame we have

E2
1 = |p1|2 +m2

φ +m2
2 +m2

3 − 2mφE2 − 2mφE3 + 2E2E3 − 2|p2||p3| cos θ3

≡ ξ − 2|p2||p3| cos θ3 (43)
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and therefore

E1 =
√
ξ − 2|p2||p3| cos θ3 (44)

Recall the general identity δ(f(x)) = δ(x− x0) 1

| df
dx

(x0)|
where x0 denotes a zero of f(x).

We utilize this to obtain

δ(E0 − E1 − E2 − E3) = δ(E0 − E2 − E3 −
√
ξ − 2|p2||p3| cos θ3) ≡ δ(u(cos θ3))

= δ(η − cos θ3)
1

| du
dcosθ3

|
(45)

where η is obtained by solving u(cos θ3) = 0 for cos θ3. Then, noting that

du

d cos θ3

=
|p2||p3|√

ξ − 2|p2||p3| cos θ3

=
|p2||p3|
E1

(46)

we may integrate over d cos θ3 in eq. (42) to obtain the final expression

dΓ = |M|2 |p2||p3|
8mφ(2π)3E1

dE2dE3d cos θ3
E1

|p2||p3|
δ(η − cos θ3)

=
|M|2

8mφ(2π)3
dE2dE3 (47)

A.1.1 Dalitz Coordinates

Define the invariant masses mij by m2
ij = (p1 + p2)2 for i,j = 1, 2, 3. It is easy to show that

for k 6= i, j we have by four-momentum conservation

m2
ij = (p0 − pk)2 = m2

φ +m2
k − 2mφEk (48)

so that

dEk = −
dm2

ij

2mφ

(49)

Thus, replacing dE2 and dE3 in eq.47 we obtain
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dΓ =
|M|2

32m3
φ(2π)3

dm2
12dm

2
13 (50)

To perform the integral, we must identify the bounds on m12 and m2
13. First notice that

m2
13 = (p1 + p3)2 = m2

1 +m2
3 + 2E1E3 − 2p1 · p3 (51)

so that m2
13 is maximum when p1 and p3 are anti-parallel, and minimum when they are

parallel. Thus we have

m2
13−max = (p1 + p3)2 = (E1 + E3)2 − (|p1| − |p3|)2

= (E1 + E3)2 −
(√

E2
1 −m2

1 −
√
E2

3 −m2
3

)2

(52)

and

m2
13−min = (p1 + p3)2 = (E1 + E3)2 − (|p1|+ |p3|)2

= (E1 + E3)2 −
(√

E2
1 −m2

1 +
√
E2

3 −m2
3

)2

(53)

Now, given that the above quantities are frame-invariant, we may boost to the m12 rest

frame and use the relations

p12 · p1 = m12E
′
1 = m2

1 + E ′1E
′
2 − p1 · p2 (54)

and

m2
12 = m2

1 +m2
2 + 2E ′1E

′
2 − 2p1 · p2 (55)

to find

E ′1 =
m2

12 +m2
1 −m2

2

2m12

(56)
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and from p2
0 = m2

φ = (p1 + p2 + p3)2 = m2
12 +m2

3 + 2E ′3m12 we find

E ′3 =
m2
φ −m2

3 −m2
12

2m12

(57)

Therfore, we see that for fixed m2
12, m2

13 is bounded above and below (respectively) by

the curves

m2
13−max =

1

4m2
12

[
(mφ +m2

1 −m2
2 −m2

3)−

(√
−4m2

1m
2
12 + (m2

1 +m2
12 −m2

2)2

−
√
−4m2

3m
2
12 + (−m2

3 +m2
12 +m2

3)2

)2]
(58)

m2
13−min =

1

4m2
12

[
(mφ +m2

1 −m2
2 −m2

3)−

(√
−4m2

1m
2
12 + (m2

1 +m2
12 −m2

2)2

+
√
−4m2

3m
2
12 + (−m2

3 +m2
12 +m2

3)2

)2]
(59)

In the special case where the decay products are massless (m1 = m2 = m3 = 0), the

bounds eqs. (58, 59) reduce to

m2
13−max = m2

φ −m2
12 (60)

m2
13−min = 0 (61)
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A.2 The φ→ χ+ ψ + ψ Decay

We consider the first order process depicted in figure 4 The first order S-matrix amplitude

for this process is given by iM = σvr(p3)ūs(p2) so that

|M|2 = σ2(vr(p3)ūs(p2))(vr(p3)ūs(p2))

= σ2(vr(p3)ūs(p2))(us(p2)v̄r(p3))

= σ2
∑
i,j

(vr(p3)iū
s(p2)i)(u

s(p2)j v̄
r(p3)j) (62)

Summing over the spins of the final states gives

∑
r,s

|M|2 = σ2
∑
r,s

∑
i,j

(vr(p3)iū
s(p2)i)(u

s(p2)j v̄
r(p3)j)

= σ2
∑
i,j

( /p3 −m3)ij( /p2 +m2)ji = tr{( /p3 −m3)( /p2 +m2)}

= σ2 tr{ /p3 /p2 −m3 /p2 +m2 /p3 −m2m3}

= σ2 tr{ /p3 /p2 −m2m3} = σ2(tr{ /p3 /p2} − tr{m2m3})

= σ2(tr{ /p3 /p2} − 4m2m3) (63)

Now, denoting the Minkowski metric by ηµν , we have

tr{(p3 · γ)(p2 · γ)} = σ2 tr{ηνµpµ3γνηµ′ν′p
µ′

2 γ
ν′}

= ηµνηµ′ν′p
µ
3p

µ′

2 tr{γνγν′}

= ηµνηµ′ν′p
µ
3p

µ′

2 (4ηνν
′
)

= 4p2 · p3 (64)

so that ∑
r,s

|M|2 = 4σ2(p2 · p3 −m2m3) (65)
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Finally, using Fermi’s golden (40) with a sum over spins, we obtain

dΓ =
1

2mφ

(
3∏
i=1

d3pi
(2π)32Ei

)∑
r,s

|M|2(2π)4δ(4)(p0 −
3∑
i=1

pi) (66)

dΓ =

∑
r,s |M|2

8mφ(2π)3
dE2dE3 = σ2p2 · p3 −m2m3

2mφ(2π)3
dE2dE3

= σ2E2E3 − p2 · p3 −m2m3

2mφ(2π)3
dE1dE2

= σ2E2E3 − |p2||p3| cos θ3 −m2m3

2mφ(2π)3
dE1dE2 (67)

Now, recall from the delta function in (45) that we have cos θ3 = η where η is obtained

from solving u(cos θ3) = 0. In particular, η is obtained through

|p2||p3|η = −1

2

[
(E2 + E3 − E0)2 − ξ

]
= −1

2

[
(E2 + E3 − E0)2 − (|p1|2 +m2

φ +m2
2 +m2

3 − 2mφE2 − 2mφE3 + 2E2E3)
]

=
1

2
(|p1|2 +m2

2 +m2
3 − E2

2 − E2
3)

=
1

2
(−m2

1 +m2
2 +m2

3 + E2
1 − E2

2 − E2
3) (68)

We can simplify part of this expression as

E2E3−
1

2
(−m2

1 +m2
2 +m2

3 +E2
1 −E2

2 −E2
3)−m2m3 =

1

2

[
(E2 +E3)2−E2

1 − (m2 +m3)2 +m2
1

]
giving us

dΓ = σ2 (E2 + E3)2 − E2
1 − (m2 +m3)2 +m2

1

4mφ(2π)3
dE2dE3 (69)

Finally, to convert to the Dalitz coordinates, first note that by energy conservation,

we have (E2 + E3)2 − E2
1 = −m2

φ + 2mφE2 + 2mφE3, while m2
12 = m2

φ + m2
2 − 2mφE3 and

m2
13 = m2

φ +m2
3 − 2mφE2 so that

26



dΓ = σ2
m2
φ +m2

1 − 2m2m3 − (m2
12 +m2

13)

16m3
φ(2π)3

dm2
12dm

2
13 (70)

B The Classical Background Approach

B.1 The φχ3 Interaction

In this section we examine the decay of a coherently oscillating background field φ(x) =

φ(x, t) = φ0 cos(mφt) into three scalar χ particles via the interaction Hamiltonian

Hint = gφχ3

In particular, we evaluate the vacuum decay rate via (40), where the amplitude for the

production of χ particles of momenta p1, p2, p3, is given by

M = 〈p1p2p3| exp

{∫ T

−T
dt

∫
d3xHint(t)

}
|0〉 (71)

= 〈p1p2p3|
∫ T

−T
dt

∫
d3x gφ(t)χ3(x)|0〉+ · · · (72)

= igφ0

∫ T

−T
dt

∫
d3x〈p1p2p3| cos(mφt)χ

3(x)|0〉+ · · · (73)

(74)

We expand the fields χ using

χ(x) =

∫
d3k

(2π)3
√

2Ek

a†ke
ik·x + ake

−ik·x (75)

where ap and a†p′ obey the commutation relations [ap, a
†
p′ ] = (2π)3δ(3)(p− p′)

In the limit of small g, we expand the integral (71) and remove terms which annihilate

the vacuum to obtain
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M = igφ0

∫ T

−T
dt

∫
d3x cos(mφt)

∫
d3k1 d

3k2 dk3

(2π)9
√

2E12E22E3

〈p1p2p3|a†k1
a†k2

a†k3
|0〉ei(k1+k2+k3)·x

= igφ0

∫ T

−T
dt

∫
d3x cos(mφt)

∫
d3k1 d

3k2 dk3

(2π)9
√

2E12E22E3

ei(k1+k2+k3)·x

×
√

2E12E22E3〈p1p2p3|k1k2k3〉

= igφ0

∫ T

−T
dt

∫
d3x cos(mφt)

∫
d3k1 d

3k2 d
3k3e

i(k1+k2+k3)·x

× δ(3)(k1 − p1)δ(3)(k2 − p2)δ(3)(k3 − p3)

= igφ0

∫ T

−T
dt

∫
d3x cos(mφt)e

i(p1+p2+p3)·x

= igφ0

∫ T

−T
dt

∫
d3x

(
e−imφt + eimφt

2

)
ei(p1+p2+p3)·x

= ig
φ0

2

∫ T

−T

∫
d3x

(
exp {(E1 + E2 + E3 −mφ)t− (p1 + p2 + p3) · x}

+ exp{(E1 + E2 + E3 +mφ)t− (p1 + p2 + p3) · x}
)

= igφ0

[
sin ((E1 + E2 + E3 −mφ)T )

(E1 + E2 + E3 −mφ)
+

sin ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3 +mφ)

]
× (2π)3δ(3)(p1 + p2 + p3) (76)

Taking the square of the amplitude, we obtain

|M|2 = g2φ2
0

[
sin2 ((E1 + E2 + E3 −mφ)T )

(E1 + E2 + E3 −mφ)2
+

sin2 ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3 +mφ)2

+ 2
sin ((E1 + E2 + E3 −mφ)T ) sin ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3)2 −m2
φ

]
× V × (2π)3δ(3)(p1 + p2 + p3) (77)

where I have used the fact that under the integral over
∏3

i=1 d
3pi,we can write

(
δ(2)(p1 + p2 + p3)

)2
= δ(3)(0)δ(3)(p1 + p2 + p3) = V × δ(3)(p1 + p2 + p3)
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where V is the (possibly infinite) volume of the phase space.

B.2 The φχψψ Interaction

In this section, we give the details for computing the amplitude for vacuum excitation re-

sulting from the time-dependent interaction

Hint = σφ(t)χψψ

with the coherently oscillating scalar field φ(t) = φ0 cos(mφt). In particular, we evaluate

first order amplitude for the production of χ, ψ, and ψ particles of momenta p1, p2,and p3.

To first order in σ, the amplitude is given by

M = 〈p1p2p3| exp

{∫ T

−T
dt

∫
d3xHint(t)

}
|0〉

= 〈p1p2p3|
∫ T

−T
dt

∫
d3x σφ(t)χ(x)ψ(x)ψ(x)|0〉+ · · ·

= iσφ0

∫ T

−T
dt

∫
d3x〈p1p2p3| cos(mφt)χ(x)ψ(x)ψ(x)|0〉+ · · · (78)

We expand the fields χ, ψ, and ψ using

χ(x) =

∫
d3k

(2π)3
√

2Ek

a†ke
ik·x + ake

−ik·x (79)

ψ =

∫
d3k

(2π)3
√

2Ek

∑
s

(
asku

s(k)e−ik·x + bs†k v
s(k)eik·x

)
(80)

ψ =

∫
d3k

(2π)3
√

2Ek

∑
s

(
bskv

s(k)e−ik·x + as†k u
s(k)eik·x

)
(81)

where [ap, a
†
p′ ] = (2π)3δ(3)(p− p′), and {arp, a

s†
p′} = {brp, b

s†
p′} = (2π)3δ(3)(p− p′)δrs.

Substituting these field expansions into the expression 78, using the commutation rela-

tions to commute creation/annihilation operators, and removing terms which annihilate the

vacuum, we find that the amplitude becomes
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M = iσφ0

∫ T

−T
dt

∫
d3x cos(mφt)

∫
d3k1 d

3k2 dk3

(2π)9
√

2E12E22E3

(82)

× 〈p1p2p3|vr(k3)us(k2)a†k1
ask2

brk3
|0〉 (83)

= iσφ0

∫ T

−T
dt

∫
d3x cos(mφt)

∫
d3k1 d

3k2 dk3

(2π)9
√

2E12E22E3

ei(k1+k2+k3)·x

×
√

2E12E22E3 v
r(k3)us(k2)〈p1p2p3|k1k2k3〉

= iσφ0

∫ T

−T
dt

∫
d3x cos(mφt)

∫
d3k1 d

3k2 d
3k3e

i(k1+k2+k3)·x

× vr(k3)us(k2)δ(3)(k1 − p1)δ(3)(k2 − p2)δ(3)(k3 − p3)

= iσφ0

∫ T

−T
dt

∫
d3x cos(mφt)v

r(p3)us(p2)ei(p1+p2+p3)·x

= iσφ0 v
r(p3)us(p2)

∫ T

−T
dt

∫
d3x

(
e−imφt + eimφt

2

)
ei(p1+p2+p3)·x

= iσ
φ0

2
vr(p3)us(p2)

∫ T

−T

∫
d3x

(
exp {(E1 + E2 + E3 −mφ)t− (p1 + p2 + p3) · x}

+ exp{(E1 + E2 + E3 +mφ)t− (p1 + p2 + p3) · x}
)

= iσ
φ0

2
vr(p3)us(p2)

[
sin ((E1 + E2 + E3 −mφ)T )

(E1 + E2 + E3 −mφ)

+
sin ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3 +mφ)

]
× (2π)3δ(3)(p1 + p2 + p3) (84)

Then, squaring the amplitude and summing over spin-states, we find (using the results

from the spin-summation in A.2) that

∑
r,s

|M|2 = 4σ2φ2
0(p2 · p3 −m2m3)

[
sin2 ((E1 + E2 + E3 −mφ)T )

(E1 + E2 + E3 −mφ)2
(85)

+
sin2 ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3 +mφ)2

+ 2
sin ((E1 + E2 + E3 −mφ)T ) sin ((E1 + E2 + E3 +mφ)T )

(E1 + E2 + E3)2 −m2
φ

]
× V × (2π)3δ(3)(p1 + p2 + p3) (86)
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where I have again used the fact that under the integral over
∏3

i=1 d
3pi,we can write

(
δ(2)(p1 + p2 + p3)

)2
= δ(3)(0)δ(3)(p1 + p2 + p3) = V × δ(3)(p1 + p2 + p3)

where V is the (possibly infinite) volume of the phase space.
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