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EXPLORATION OF QUANTUM OPTIMAL CONTROL

ABSTRACT

In this senior thesis, we studied the resources used for controlling closed quan-

tum systems of spins in the presence of electromagnetic fields through methods

of quantum optimal control. By resources we mean physical quantities such as

energy, time of control, and bandwidth of control waveforms which are modu-

lated to achieve desirable state maps. Optimal control waveforms were found

by numerically minimizing the infidelity which is the probability of not reach-

ing a target state. The minimum time required to successfully implement a con-

trol, called the Quantum Speed Limit (QSL), was observed by plotting the best

achieved infidelity versus the time allotted for control, T . It was observed that

by increasing the bandwidth of the control waveform, the infidelity could be

minimized for times greater than the QSL. In addition, for low bandwidths, the

plots of infidelity versus total control time demonstrated behavior that can be

interpreted as the effect of the topology of the Hilbert Space on the controllabil-

ity. Results also showed that as the dimension of the Hilbert Space increased,

longer times and bandwidths are required for successful optimal control as ex-

pected. Finally, an interesting feature of the control landscape for the control of

a spin-1/2 particle is interpreted as what could be a general geometric property

of dynamics implemented by unitary matrices from the Lie Group S U(2).
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CHAPTER 1

INTRODUCTION

The nature of quantum mechanics allows us to create coherent superposition

states that can interfere with each other. This enlarges the Hilbert space (state

space) and opens up more possibilities of what can be done with a quantum sys-

tem compared to what is possible with a classical system. Quantum technolo-

gies such as atom interferometry, atomic clocks, and quantum computing, take

advantage of this [6, 18]. Reaching an arbitrary superposition state in state space

or creating a unitary transformation is nontrivial since it depends on what inter-

actions are available in the laboratory. Thus, it is important to determine what

dynamics are possible with the Hamiltonian available. For example, if our goal

is to drive a transition from one energy level to another or implement a quantum

logic gate, we must determine if our physical system is controllable enough to

achieve these goals. In addition to having a controllable system, one also needs

to give the system sufficient time to evolve as we want. This sets a lower bound,

called the Quantum Speed Limit (QSL), on the amount of time needed to control

the system in a way that achieves desirable dynamics. We often want to control

a quantum system near the QSL to avoid any unwanted corruption to quantum

states, since superposition states are fragile and susceptible to decoherence. But

sometimes it might not be in our best interest to do control at the QSL because,

in general, as we decrease the time of control, higher bandwidths are required

to implement rapidly changing control waveforms/functions. Quantum Opti-

mal Control (QOC) is a strategy to help us find how we can reach our objective

with limited resources. It searches for a control waveform that modulates the

Hamiltonian in such a way that some cost function is optimized.
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There is a trade-off between the limited resources that has not been explored

extensively and is the focus of this thesis. In particular, we look how the avail-

ability of these resources affect each other for closed, controllable quantum sys-

tems of spins in the presence of electromagnetic fields. The trade-off changes

with dimension of the Hilbert Space so our studies begin with the control of a

spin-1/2 system in Chapter 2. Dynamics for this system are well understood

by using concepts from quantum optics such as Rabi oscillations [9], so we take

advantage of this and discuss it in this chapter. Substantial intuition is gained

by studying the dynamics, which is helpful for us to understand why a con-

trol protocol is successful, and why it fails. Then, once the control problem is

framed, controllability of the system is assessed and the implementation of opti-

mal control is explained. Optimal control is used to achieve desired target states

by finding control functions that maximize the probability of arriving at some

target state. The control function is chosen to be a piecewise constant function

that can be thought of as a pulse sequence. This pulse sequence is defined by

pulses with different amplitudes but the same duration. Chapter 3 is the ex-

ploration of the optimal control of higher spin systems with piecewise constant

control functions. The Hilbert Space of these systems is more complicated so the

dynamics cannot be studied in the same intuitive way as with the spin-1/2, but

there does exist a controllable Hamiltonian and its controllability is motivated

[17].

1.1 What are Control and Optimal Control?

Control Theory is used in many subject fields to devise a control protocol which

ensures that objectives are reached given some constraints. In both classical and
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quantum control, it helps us answer the question of whether a system is con-

trollable enough given the available interactions to achieve desired dynamics

or not and also, how it can be controlled. There are two types of control proto-

cols: open and closed loop controls. Open loop controls do not involve feedback

since settings are predetermined without intermediate measurements. A closed

loop control includes measurement and feedback during the process so that set-

tings are modified until the desired outcome is achieved [23]. An example of

closed-loop control in classical mechanics is the function of ventilators. The

goal of ventilators is to assist when someone has trouble breathing so control-

ling the air that is transported to and from a patient is important. Oxygen level,

air pressure and air volume have to be controlled accurately by the ventilator so

these are measured continuously and to modify the settings as needed [4].

Within closed and open loop controls, one control strategy is optimal control.

The question that is answered with optimal control is as follows. Assuming a

quantum system can be controlled, what is the best way to control it and how

well can it be controlled? The ”best” way is one that minimizes a cost func-

tion. Optimal control problems are formulated mathematically such that there

is a cost function to be optimized over chosen control parameters or waveforms,

also called control functions [2]. Some of the first applications of QOC were in

the interest of driving chemical reactions and studying nuclear magnetic reso-

nance [23]. In these applications, lasers were controlled to create the pulse shape

that caused the electronic transitions sought-after.

Some examples of QOC being woven into a control protocol can be found in

[3, 21] where the goal was population transfer between the ground state (|ψ0〉)

and some goal state (
∣∣∣ψg

〉
) of the system. In [21], a Hamiltonian of the form
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Ĥ = Ĥ0 + λ(t)Ĥi was assumed where λ(t) is the control function in the control

problem. The goal was to find the control function that achieved the population

transfer with as high probability as possible for a fixed total time for evolution,

T . So, the ”best” control function would drive the evolution to yield a final state

|ψ(T, λ)〉 =
∣∣∣ψg

〉
. The probability of the final state being the goal state is called

the fidelity and is found by calculating F =
∣∣∣∣〈ψ(T, λ)|

∣∣∣ψg

〉∣∣∣∣∣∣∣∣2 which is also the

population in the goal state. For this control problem, the cost function was

the infidelity (1 − F ) and Krotov [13] numerical methods were used to find the

control function that minimized it. The population transfer desired (labeled

P2 for ”process 2”) is achieved with high fidelity by implementing the control

function shown in the top of Figure 1.1.

Figure 1.1: Top: Optimal control functions that achieve a process P2 found
with numerical and analytic methods are plotted. Bottom: The popula-
tions for several processes resulting from the control functions found are
plotted. The main point here is that we see that the numerically deter-
mined optimal control function plotted in the top plot achieves total pop-
ulation transfer over the allotted time for process P2 which proves that the
control function does indeed minimize the infidelity. Reproduced from
[21].
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In the implementation of quantum logic gates for quantum computing, the

procedure typically involves the maximization of the gate fidelity [18, 1]. Some

of the most popular methods to optimize the cost function include GRAPE (gra-

dient ascent pulse engineering) [12], the Krotov Algorithm [14, 13] and other

gradient search algorithms. For our purposes, the method of choice will be

a gradient-descent method using the Broyden – Fletcher – Goldfarb – Shanno

(BFGS) algorithm to minimize the infidelity (probability of the final state not

being equal to the final state) of state maps [10].

1.2 Controllability

In general, a control problem begins with a Hamiltonian of the following form:

Ĥ(~u(t)) = Ĥ0 +

n∑
k=1

uk(t)Ĥk

H0 is called the ”drift” Hamiltonian and it is constant in time. The Hk are

called the ”control Hamiltonians” and are modulated in time by the functions

uk(t). These functions are dependent on the classical fields that have parame-

ters or settings that can be changed over time according to functions called the

”control waveforms/functions.” The goal is to determine the waveforms that

achieve some dynamics, but first we must determine to which degree we can

control the system.

There are many types of controllability ranging from completely controllable

to pure state controllable. As the names imply, completely controllable means
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that any possible unitary transformation on the Hilbert Space is achievable and

pure state controllable means that any map from an arbitrary pure state to an-

other is achievable. The controllability of a system can be determined by using

properties of Lie Algebras and Lie Groups [7]. A Lie Group is a continuous

group and the associated Lie Algebra is the tangent space at the identity of the

Lie Group. Relevant examples of Lie Groups are U(n) and S U(n). U(n) is the

group of all n × n unitary matrices and S U(n) is the group of all n × n unitary

matrices with determinant 1, both with matrix multiplication as the operation

on the groups. Their corresponding Lie Algebras are u(n) and su(n) with the

commutator as the operation on the algebras.

For a given Hamiltonian, the dynamical Lie Algebra, L, associated with the

system is generated by H0,H1, ...,Hn. The dynamical Lie Algebra is always a

sub-algebra of u(n) where n is the dimension of the Hilbert Space. In particular,

if the dimension of L is n2 then it is exactly u(n). If instead, the dimension is

n2 − 1, then L = su(n).

By the correspondence between Lie Groups and Lie Algebras, the Lie Group

associated with the system is eL and it is always a subgroup of U(n). Further-

more, this Lie Group is the set of the reachable unitaries [7]. We see that if the

Hilbert Space is of dimension n, then the set of all of unitary transformations

is the Lie Group U(n). Hence, for the system to be controllable the dynamical

Lie Algebra would have to be u(n) whose dimension is n2. If the overall phase

is irrelevant to the control problem, then for the system to be controllable it is

sufficient for the dimension of the Lie Algebra to be n2 − 1, L = su(n).

We determine the dynamical Lie Algebra by finding a basis that generates it.

We can start the basis with operators from the Hamiltonian: H0,H1, ...,Hn. The
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operation of the Lie Algebra is commutation so to create more basis elements,

we take several commutators of different depths and repeat with the elements

that are linearly independent (see Equations 1.1-1.3 for examples). This is done

until no more linearly independent elements are generated or the dimension of

the linearly independent set is n2 or n2−1, which implies complete controllability.

Depth 1 : [Ĥ1, Ĥ1] := Ĥ1Ĥ2 − Ĥ2Ĥ1 (1.1)

Depth 2 : [Ĥ3, [Ĥ1, Ĥ1]] (1.2)

Depth 3 : [Ĥ4, [Ĥ3, [Ĥ1, Ĥ1]]] (1.3)

1.3 Quantum Speed Limit

One of the biggest enemies of quantum control is state decoherence. The prob-

ability that decoherence occurs increases with time, so it is often in our best in-

terest to do controls fast enough to avoid it. However, there exist fundamental,

physical limitations that set bounds on how fast an evolution can occur suc-

cessfully. This is called the Quantum Speed Limit (QSL) and there have been

numerous analytical studies to determine bounds on the QSL. One of the first

investigations on the QSL set bounds on evolution time for time-independent

Hamiltonians that arise naturally from the energy-time uncertainty principle

[16]. From this idea, there have been extensions to open quantum systems [8]

where the QSL can be interpreted geometrically in the Hilbert space since it de-

pends on the distance between the initial and final state (
〈
ψi

∣∣∣ψ f

〉
where |ψi〉 is the
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initial state and
∣∣∣ψ f

〉
is the final state). The time required also depends on the en-

ergy variance which speaks to the trade-off between time and energy required

for an evolution:

t ≥
arccos(〈ψi|ψ(t)〉)

∆E

When analytic solutions are not possible we resort to numerical experiments

to see what the QSL is for some desired evolution. Pareto front tracking can be

used to see how the success of QOC depends on the time allotted for evolution

[5].
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CHAPTER 2

CONTROL OF A SPIN 1/2 SYSTEM (S U(2))

We consider a spin-1/2 particle in a time-dependent magnetic field, ~B(t), that is

a superposition of a field constant along the z-axis and a perturbative field oscil-

lating along the x-axis with magnitude Ω, oscillation frequency ω, and phase φ.

The constant field produces Zeeman splitting and has eigenstates |↑〉 , |↓〉 called

”spin-up” and ”spin-down” respectively. These are the standard basis states for

two-dimensional Hilbert Space. Our goal is to achieve an evolution from spin-

down to an arbitrary target state. The perturbative field, also called the driving

field, is essential to the control problem since the unperturbed field itself would

not be enough to achieve an arbitrary target state. It is also called the driving

field because it drives spin magnetic resonance. That is, given the right param-

eters, when the system is driven at resonance (ω = ω0) the probability of being

one of the standard basis states oscillates.

Our Hamiltonian is taken to be of the following form:

Ĥ(t) = −~̂µ · ~B(t) =
~ω0

2
σ̂z +

~Ω

2
cos(ωt + φ)σ̂x

Now, we review the dynamics of spin resonance dynamics which is at the

heart of this control protocol [9]. We begin by transforming to the rotating frame

at the magnetic field frequency, ω, by using the unitary operator ÛRF = e−iωt
2 σ̂z . A

state |ψ〉 is mapped to the rotating frame by |ψ(t)〉RF = Û†RF |ψ(t)〉. Using this and

the Schrödinger Equation, we find the Hamiltonian in the rotating frame (Eq.

2.1 - Eq. 2.4). The Hamiltonian in the rotating frame, ĤRF , is made up of two

terms. One is what we call the effectively rotated Hamiltonian because it is a
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similarity transformation of the original. The other term is a fictitious magnetic

field propagating in the negative z-direction with magnitude ω resulting from

changing to a rotating frame.

i~
∂ |ψ(t)〉RF

∂t
= i~

∂Û†RF |ψ(t)〉
∂t

(2.1)

= i~

Û†RF
∂ |ψ(t)〉
∂t

+
∂Û†RF

∂t
|ψ(t)〉

 (2.2)

=

(
Û†RF ĤÛRF −

~ωσ̂z

2

)
|ψ(t)〉RF (2.3)

= ĤRF |ψ(t)〉RF (2.4)

We obtain an explicit expression for the Hamiltonian in the rotating frame

(see Equations 2.5-2.7). σ̂+, σ̂− are the raising and lowering operators. Exam-

ining the expression, we discover two important pieces of information. Firstly,

we note that the strength of what was the strong field (ω0) is now the detuning,

∆ := ω − ω0 which quantifies how far the magnetic field frequency is from the

spin resonance frequency. On resonance, this term vanishes. Another important

note is that we can interpret the driving field as being composed of co-rotating

and counter-rotating fields such that when we went into the rotating frame, one

of them became a time-independent field and another that is oscillating with

frequency 2ω.
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Ĥ(t) =
~ω0

2
σ̂z +

~Ω

4
(eiωteiφ + e−iωteiφ)(σ̂+ + σ̂−) (2.5)

=⇒ ĤRF(t) =
~ω0

2
σ̂z +

~Ω

4
(eiωteiφ + e−iωteiφ)(σ̂+eiωt + σ̂−e−iωt) −

~ωσ̂z

2
(2.6)

= −
~∆

2
σ̂z +

~Ω

4
((σ̂+e2iωteiφ + σ̂−e−2iωte−iφ) + (e−iφσ̂+ + eiφσ̂−)) (2.7)

Now we apply the RWA to obtain:

ĤRF(t) ≈ −
~∆

2
σ̂z +

~Ω

2

(
cos φσ̂x + sin φσ̂y

)
(2.8)

Therefore, if Ω � ω and ∆ � ω0, then the terms with e±2iωt are oscillating

much faster than the rest of the frequencies that dictate the dynamics. This

would permit the application of the rotating wave approximation (RWA) which

averages the fast-oscillating terms to zero because they have no significant effect

on the dynamics. If we write the state as |ψ〉 = c↑ |↑〉+ c↓ |↓〉, then the Schrödinger

equation would yield differential equations for the coefficients of the coherent

superposition (see Equations 2.9-2.10). On resonance, the solutions are Rabi

oscillations with period 2π
Ω

. The shortest amount of time needed to transfer the

state from spin-down to spin-up is π
Ω

.

ċ↑ = −
i
2

(
∆c↑ + Ωe−iφc↓

)
(2.9)

ċ↓ = −
i
2

(
Ωeiφc↑ − ∆c↓

)
(2.10)

When the parameters do not satisfy these conditions, the RWA is not valid

and the dynamics are not so straightforward. However, these conditions are
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typically satisfied and the RWA becomes a very good approximation. For ex-

ample, in the case of the Cesium-133 clock transition, we have ω0/2π ≈ 9.19GHz,

∆/2π,Ω/2π ∼ 10kHz. For this reason we assume for the remainder of this chapter

that we are driving at resonance and Ω << ω and adopt the Hamiltonian from

Eq. 2.8 for our control problem.

2.1 SU(2) Controllability

So far, we have been treating φ as a time-independent parameter but this would

affect the extent of our controllability. If the phase is constant, then the Hamil-

tonian is time independent and the time evolution operator is simply Û = e−i Ĥt
~ .

One special property of S U(2) is that it is closely related the group of 3 × 3

rotation matrices, S O(3) [22]. In fact, all unitaries can be written in the form

exp
{
−i θ2 ~̂σ · ~en

}
which is the quantum mechanical operator for a rotation of a spin-

1/2 particle of angle θ about the real unit vector ~en. In particular, these operators

can describe the rotation from some initial state |ψi〉 to a final state
∣∣∣ψ f

〉
which

can be plotted as vectors on the Bloch sphere (Figure 2.1).

Suppose we drive the system at resonance, then the time evolution oper-

ator is a rotation of angle Ωt about a unit vector on the x-y plane defined by

azimuthal angle φ (Eq. 2.11). This means that if the phase is constant then we

would only be allowed to do rotations about a single axis defined by φ. To make

our control more flexible, we make the phase time-dependent ( φ → φ(t)) that

we can tailor as we need.
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((a)) ((b))

Figure 2.1: a) Any pure state, |ψ〉, can be represented by a unit vector de-
fined by angles ϕ, ϑ which define the state as a superposition of spin-up
and spin-down (Eq. 2.16). b) A rotation of angle θ about the unit vec-
tor ~en takes the initial state |ψi〉 to the final state

∣∣∣ψ f

〉
. This rotation can be

represented by the unitary transformation in Equation 2.11.

exp
(
−iĤ(φ)t/~

)
= exp

(
−i

Ωt
2
~̂σ · (cos(φ)~ex + sin(φ)~ey)

)
(2.11)

The dimension of the Hilbert space is d = 2, so the Lie Group of all unitaries

acting on the Hilbert Space is SU(2) (neglecting overall phases). A basis for the

corresponding Lie Algebra, su(2), is known to be the set of Pauli matrices (Eq.

A.1). So in order to have a controllable system, we would want the dynamical

Lie Algebra to generate all of the Pauli matrices. For the control we will consider

the Hamiltonian to be at resonance, leaving σ̂z out of the Hamiltonian. Thus,

we have to prove controllability with the remainder of the Hamiltonian which

means that the basis elements that we start with are σ̂x, σ̂y. According to the

process outlined for showing complete controllability, the next step is to take

the commutator [σ̂x, σ̂x]. The result is a term proportional to σ̂z so we have
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obtained all of the generators of the Lie Algebra su(2) once more and the system

is controllable.

2.2 Optimal Control of SU(2)

The infidelity is a measure of how much overlap there is between the final state

of an evolution and some target state (Eq. 2.12), and for this optimal control

problem, it will be the cost function we minimize over the control function, I(φ).

When the final state is exactly the target state, the infidelity is zero. Thus, we

want to find the control function that will make achieve an infidelity less than

some defined tolerance. We restrict our search for the optimal control function

to piecewise constant functions defined by N equal number of pulses over a

total time T (Eq. 2.13).

I(φ) = 1 − F (φ) = 1 − |〈ψtarg|Û(φ) |ψ0〉 |
2 (2.12)

φ(t) =



φ0 0 ≤ t < T
N

φ1
T
N ≤ t < 2 T

N

...

φN−1 (N − 1) T
N ≤ t < N T

N = T

(2.13)

This choice for the control function also makes the Hamiltonian piecewise

constant. The solution to the Schrödinger equation for the time evolution op-

14



erator when the Hamiltonian is constant is e−i Ĥ(φ)n)δt
~ so the total time evolution

operator from t = 0 to the total time T is the product of unitaries for each con-

stant Hamiltonian (Equation 2.14). Further, note from Equation 2.15 that the

total unitary transformation is the product of rotations of angle Ωδt about the

unit vector cos(φn)~ex + sin(φn)~ey.

Û(φ) = e−iĤ(φN−1)δt/~) · · · e−iĤ(φ0)δt/~) (2.14)

where

e−iĤ(φn)δt/~ = exp
(
−i

Ωδt
2
~̂σ · (cos(φn)~ex + sin(φn)~ey)

)
(2.15)

The number of pulses (N) and the total time of the evolution (T ) will affect

which control function is found. We seek to study the relationship between

these quantities in order to gain information about the trade-off between re-

sources. From the point of view of controllability, we know that if we were able

to implement a control function with infinite bandwidth over a time greater

than the QSL, then we would certainly minimize the infidelity. However, we do

not have such resources available so we will search for the control function that

can be applied near the quantum speed limit and see what sort of bandwidth is

required.

2.3 Algorithm for Optimal Control

We optimize the infidelity with respect to φ(t) using the Broyden – Fletcher –

Goldfarb – Shanno (BFGS) algorithm [10]. BFGS is an iterative algorithm that
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searches for stationary points of a cost function. The general idea is that start-

ing at some random φ, the algorithm calculates the gradient at nearby points

and follows the paths with negative gradient until it is sufficiently close to zero.

Note that since the control function is piecewise constant, the control landscape

isn’t smooth but it is smooth enough to converge if such a stationary point

exists[15]. ”Sufficiently close” is chosen to be an infidelity 10−8. This can be

understood because the angle between the final and target states can be found

with the inner product
〈
ψtarg

∣∣∣ψ f

〉
= cos θ. If θ = 10−4, the states are very close to

being the same. Thus, the infidelity in the small-angle approximation would be

10−8:

I = 1 − cos2 θ = sin2 θ ≈ θ2

To study the quantum speed limit of the system we use the idea of Pareto effi-

ciency which began in the context of economics. Oftentimes, we have resources

that we want to optimize but can not be modified independently of others. So,

Pareto efficiency is reached when we can have all resources as close to optimal

as we can. This state of being ”Pareto efficient” can be searched for using Pareto

front tracking. By producing a curve that demonstrates the trade-off between

some resources we can find the most optimal point [5]. A demonstration is

shown in Figure 2.2.

In our case, we want to find the smallest time for which we can find a control

waveform that optimizes the infidelity. We search for the Pareto front by fixing

the number of pulses, initial and target state, and Rabi frequency. Then, we use

BFGS to find an optimal control waveform for several total times T allotted to

do the control. These total times are distributed from zero to a time well past
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Figure 2.2: This is a representation of what a plot might look like when
looking for the Pareto front. By plotting the value of the cost function we
want to minimize versus some resource that we also want to minimize
we can find the optimal resource value. In this case, we can clearly see
that when the resource is in the region from 4-6, the cost function can’t be
minimized successfully. Thus the Pareto front is in this region.

the QSL. With this data, we produce a plot of optimal infidelity versus total

control time (plots are shown in Section 2.4). This is repeated for many random

target states and then the average of the optimal infidelities is calculated for

each total time. From these results, the Pareto front from is identified as the

region containing the smallest time where the infidelity was optimized below

the threshold (Section 2.4).

To sample random states uniformly from the Hilbert Space, we think about

its topology. Since it is S U(2) is closely related to S O(3), then each state can be

mapped to a point on the surface of the Bloch sphere. Any pure state can be

thought of as a unit vector, ~en, on the Bloch sphere defined by the azimuthal( ϕ)

and the polar (ϑ) angles.
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|↑〉n = cos(ϑ/2) |↑〉 + eiϕ sin(ϑ/2) |↓〉 (2.16)

A differential element of area on the sphere does not depend uniformly on

the polar angle, ϑ, as the dependence is sinϑ. Instead it follows a sinusoidal dis-

tribution (Eq. 2.17) since there is more probability of a point being at the equator

than at the poles. From Eq. 2.17 we see that the quantity cos(ϑ) is uniformly dis-

tributed on the sphere so to get a uniformly distributed azimuthal angles we

can make a change of variables − cosϑ → ξ which has a range of [−1, 1]. We

can then sample random ξ with built-in functions in and then take the inverse

cosine of it to obtain a random ϑ.

dA = sin(ϑ)dϕdϑ = dϕd(− cos(ϑ)) (2.17)

From our knowledge of the dynamics of the system, we know that an impor-

tant time scale is π
Ω

since it is the minimum amount of time required to transfer

spin-down to spin-up. Thus, we would expect for the QSL to be less than or

equal to this time and a reasonable maximum total time for Pareto front track-

ing is 4 π
Ω

. One of the parameters that needs to be fixed for the algorithm is the

number of pulses. Since we are interested in the relationship of total time and

number of pulses, then we would like to use various values of N. What are some

reasonable values of N? The number of pulses refers to the number of rotations

that are done to go from spin-down to the target state so we can think of how

many parameters are needed to find the right rotation. The target state is de-

fined by two parameters since there are 2 ∗ D = 4 real parameters but there are
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two restrictions, normalization and neglecting overall phase. Thus, a reasonable

set of number of pulses to fix are N ∈ 2, 3, 4, 5, 6.

2.4 SU(2) Results

The results shown in Figures 2.4(a)-2.4(e) are the average of 20 random target

states. The QSL is close to π
Ω

on average. It is evident from the plots for N =

2, 3, 4 that there is oscillatory behavior of the optimized fidelity. This can be

understood by thinking about the dynamics on the Bloch sphere. Suppose we

wanted to evolve the system from spin-down to spin-up. If N = 1 we can rotate

about any axis, ~en, so φ could take any value but we would require a total time

of the form (2k + 1) π
Ω

, k ∈ N to achieve a pi-pulse (Figure 2.3). If the total time

was an even multiple of π
Ω

, then we would be doing 360 degree rotations which

would yield spin-down as the final state.

By understanding this behavior, we see when N is small we don’t have the

freedom to do all rotation necessary meaning that we have to pick our rotations

carefully. As we have larger N we have access to more rotations so we can

achieve target states more easily and the infidelity curve becomes flatter. This

trend is seen as N increases in Figures 2.4(a)-2.4(e). From indicate that if one

wants to ensure that an optimal control waveform is found for an arbitrary state

map, a good idea would be to increase N and let the system evolve for a time

greater than the QSL.

A particularly interesting result from Figure 2.4(a) is that with two pulses,

every state could be achieved even at the QSL. This suggests that given any

random target state, there exist two rotations that will take spin-down to the
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Figure 2.3: The Bloch sphere at the top shows the initial state (green), target
state (yellow-orange), torque vector about which to rotate (red), and the
angle of rotation θ. To successfully rotate spin-down to spin-up, θ must be
an odd multiple of π. According to Equation 2.15, the angle of rotation is
Ωδt. Thus, to achieve this desired state map, we must apply a pulse for
Ωδt = π. That is for a time δt = π

Ω
.

target state with optimal infidelity. These two rotations are of the same angle

but about two different axes on the x-y plane. This happens when the allotted

control time is of the form (2k + 1) π
Ω

, k ∈ N. Because the sphere is isotropic this

can be generalized to the following statement.

Conjecture 2.4.1 Given any two unit vectors on the Bloch sphere, there exists a se-

quence of two rotations that will take one vector to the other. In particular these ro-

tations are by the same angle about axes on a plane perpendicular to one of the given

vectors.
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((a)) ((b))

((c)) ((d))

((e))

Figure 2.4: The optimal infidelity achieved for 20 target states for differ-
ent total times is averaged for a control waveform with (a) 2 pulses, (b) 3
pulses, (c) 4 pulses, (d) 5 pulses, and (e) 6 pulses. On the y-axis is the log of
the averaged infidelity and the x-axis is of the total times in units of π/Ω.
The threshold is marked by the dashed red line at -8.
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Figure 2.5: Contour plot of the average infidelity over 20 random target
states at different (T,N) points for optimal control of spin-1/2.
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CHAPTER 3

CONTROL OF SPIN J

We now consider the system of a particle with spin greater than 1/2 in the pres-

ence of electromagnetic fields. The controllability of a Hamiltonian for this sys-

tem can not be determined as trivially as in the case for spin-1/2 because the

dimension of the Lie Algebra is required to be larger than the size of the set

of angular momentum operators. What this means is that it is not enough for

the Hamiltonian to include Ĵx, Ĵy, Ĵz (Eq. A.4). In addition, the dynamics for

these systems can not be mapped to a space that we can visualize so they are

not as predictable as with spin-1/2. However, we can still design a controllable

Hamiltonian and solve for the dynamics. QOC is implemented in the same way

as with the spin-1/2 case and the QSL is searched for in the same way as well.

What changes are the ranges for the total time and number of pulses that we

use to define the control waveform. The controllability of the Hamiltonian and

the observed trade-off between the control resources are discussed.

3.1 Controllability

We recall that for a system of a particle with spin j, the dimension of the Hilbert

Space is d = 2 j + 1. This is understood because the standard basis states are

the eigenstates of the angular momentum operator along the z-axis, Ĵz. These

eigenstates are denoted |m〉 for m ∈ {− j,− j + 1, ..., j − 1, j}. The unitary operators

acting on this Hilbert space, neglecting overall phases, make up the Lie Group

SU(d). This means that the generating set is of size d2 − 1.
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Suppose we want to control a spin-1 particle. The Hilbert space is of dimen-

sion 3 so the generating set of the Lie Algebra su(3) contains 8 elements. Clearly,

if the Hamiltonian was of the same form like in the case of the spin-1/2, then

it would not be controllable because the commutator of the angular momen-

tum operators is [Ĵi, Ĵ j] = i~εi jk Ĵz and do not generate enough basis elements,

it only produces 3 (Ĵx, Ĵy, Ĵz). Even if we took commutators of elements in this

set, no new operators would be generated and we would never obtain a set of

linearly independent elements that span a space with dimension 8. This is true

for any higher spins j ≥ 1. As a result, it is necessary to include another gen-

erating term in the Hamiltonian. It turns out that it is sufficient to include a

term proportional to Ĵ2
z [17]. For the case of spin-1/2, Ĵ2

z is the identity opera-

tor so it wouldn’t add any more terms to the generating set. Thus, we will use

the following completely controllable Hamiltonian to control our state maps in

d-dimensional (d ≥ 3) Hilbert Space.

Ĥ(φ(t)) = ~Ω(cos(φ(t))Ĵx + sin(φ(t))Ĵy) + ~κĴ2
z

3.2 Optimal Control of SU(d)

The dynamics of a larger spin and the topology of SU(d) (d > 2) are more of a

mystery to us than those of SU(2). We are not able to visualize the dynamics

similar to the way we did before. However, because of the intuition that we

gained in Chapter 2 we are able to make some educated decisions on parame-

ter choices. For example, the range of number of pulses, N, that we looked at
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were from 2d to 2d + 4 and the total time up to (4d) π
Ω

. We also choose Ω = κ.

By choosing them to be equal, we have the two components of the Hamilto-

nian acting equally instead of one being a perturbation. This choice, however,

could be changed and it would affect the dynamics which could be something

interesting to look into further in future research.

Since we want to average the results over many random states and thus get

a more complete picture of resource trade-off we must have a way of sampling

random target states uniformly. We got a sneak peak of how we must be careful

with how we pick random states from S U(2) to ensure a uniform distribution.

Rrandom states in d-dimensional Hilbert Space can be producds by applying a

random unitary matrix on a fiducial state. These random unitary matrices are

elements of the group G = U(d) which is a locally compact topological group.

Groups like these have an associated Haar measure, µ [19].

Definition 3.2.1 (Haar Measure) The Haar Measure, µ, on a locally compact topo-

logical group G is one that satisfies the following condition for all g ∈ S ⊆ G.

µ(gS ) = µ(S g) = µ(S ) :=
∫

g∈S
dµ(g)

A measure defined on a set is used to measure the ”size” of a subset. Further-

more, if µ(G) = 1, then µ is a probability measure on G. We can take advantage of

this by finding a probability density function f (g) on G which in turn becomes

a probability distribution from which we can sample random elements of the

group. The appropriate function for the general group U(d) was found in [24]

and it was shown that the right distribution is produced by orthogonalizing any

random matrix, Z ∈ Cdxd, using the Gram-Schmidt process [19, 11].

Thus, to create a random state, we generate a random unitary matrix and
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then multiply this with a unit vector from the Hilbert Space. For our purposes,

our fiducial state vector was of the form (0,0,...,0,1).

3.3 Results

The results shown here are for Hilbert Space dimensions of 3, 4, and 5. The plots

are grouped by dimension and are differentiated by the number of pulses that

the control waveform was defined by. We observe what the QSL is for each of

the dimensions and also the minimum number of pulses required to optimize

the infidelity.

The QSL for spin-1 (d = 3) seems to be between π
Ω

and 2 π
Ω

. The smallest

number of pulses required to have optimal infidelities reached is N = 5. There

is some oscillatory behavior in the infidelity similar to that seen for S U(2). As

the number of pulses increases, we see that the curve flattens out as well.

The QSL for d = 4 seems to be 2 π
Ω

. The smallest number of pulses required

to achieve optimal infidelities is N = 7.

The QSL for d = 5 seems to be between 3 π
Ω

and 4 π
Ω

. The smallest number of

pulses required to achieve optimal infidelities is N = 10.

We observe that with higher bandwidth (more N) one can ensure that a de-

sired state map can be achieved with high fidelity even for times near the QSL.

This is what would be expected but something that is interesting is how the op-

timal infidelity behaves for small N. In the case of the spin-1/2, we understand

the oscillatory behavior because of the topology of the Hilbert Space so it is most

likely the case that the behavior we see for higher dimensions is also a result of
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((a)) ((b))

((c)) ((d))

Figure 3.1: We considered the system for spin 1, d = 3. Plots show average
optimal infidelities versus total control time achieved for (a) 5, (b) 6, (c) 7,
and (d) 8 pulses. The average was taken over 20 random target states and
threshold is marked by dashed red line at -8.

the topology of higher dimensional Hilbert Space.

Table 3.1: Summary of Results per Dimension

d Nmin QS L( π
Ω

)
2 2 0.5-1
3 5 1-2
4 7 2-3
5 10 3-4

Table 3.2: Summary of minimum number of pulses, Nmin, and range of the
QSL required for the state maps to be achieved with optimal fidelity for
dimensions seen in Figures 2.4 - 3.4.
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Figure 3.2: Contour plot of the average infidelity over 20 random target
states at different (T,N) points for optimal control of spin-1.

((a)) ((b))

Figure 3.3: We considered the system for spin 3/2, d = 4. Plots show aver-
age optimal infidelities versus total control time achieved for (a) 7 and (b) 8
pulses.The average was taken over 20 random target states and threshold
is marked by dashed red line at -8.
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((a)) ((b))

((c))

Figure 3.4: We considered the system for spin 2, d = 5. Plots show aver-
age optimal infidelities versus total control time achieved for (a) 10, (b) 11
and (c) 12 pulses.The average was taken over 20 random target states and
threshold is marked by dashed red line at -8.
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CHAPTER 4

CONCLUSION AND OUTLOOK

In this thesis, we investigated the relationship between time and bandwidth

needed to successfully implement optimal quantum control for closed systems

of spins. We began with the system of a spin-1/2 particle in the presence of

a magnetic field with a component constant component along the z-axis and a

driving component oscillating along the x-axis. By transforming to the rotating

frame, spin resonance dynamics are produced by choosing the detuning, ∆ and

the Rabi frequency, Ω, to be much smaller than the driving frequency, ω, and

thus be allowed to make the RWA. This helped us gain intuition on how a con-

trol protocol could be designed and we obtained a controllable Hamiltonian [9].

The controllability of the Hamiltonian is shown by demonstrating that the op-

erators in the Hamiltonian generate the Lie Algebra su(2) which in turn means

that any unitary in S U(2) can be reached.

The phase shift, φ, of the transverse field is chosen as the control waveform

and because of the relationship between S U(2) and S O(3) [22], we can interpret

φ as the azimuthal angle of the axis on the x-y plane about which the spin ro-

tates. Thus, by choosing the control waveform, φ(t), to be a piecewise constant

function, the goal of the optimal control algorithm is to find the sequence of ro-

tations that achieves the desirable state map and minimizes the infidelity. The

control waveform is defined by T , the total time of the evolution and N, the

total number of pulses. The pulses are each applied for a time T/N. T , N and

the optimal infidelity achieved by the optimal control algorithm are related in a

complex way that give us information on the time and bandwidth needed for a

control. We can observe how the optimal infidelity changes with the total time
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of the evolution by plotting the optimal infidelity achieved versus total time of

evolution for a given desirable state map. For simplicity our state maps were

from spin-down to a random state sampled uniformly from the surface of the

Bloch sphere. The Pareto front seen on the plot, which is where the infidelity

can not be optimized, indicates the QSL time [5].

To get a general view of the QSL, this data was gathered for several random

target states for a specified number of pulses, N, and the average of the optimal

infidelity was taken at each total time. Several plots were created with this data

for various N. The data demonstrated that the QSL approached π
Ω

. This is rea-

sonable since it is the time needed to take spin-down to spin-up which would

be the state the furthest from our initial state. A comparison of the plots for

different N reveals that when N is small, the infidelity is optimized at times that

are odd multiples of π
Ω

. This can be understood because at even multiples of π
Ω

we are essentially rotating back to spin-down. To ensure that the infidelity can

be optimized for all time greater than the QSL, many pulses have to be applied.

It is also interesting to note that even though it is known that any rotation can be

decomposed into three rotations about orthogonal axes according to the Euler

Decomposition, our studies for N = 2 suggests that any rotation can actually be

decomposed into two rotations by the same angle about axes orthogonal to the

initial or target state. We presume that this can be proven analytically.

We expand this study to systems with a general spin j > 1/2. A controllable

Hamiltonian for a system with a larger Hilbert Space requires a term other than

the angular momentum operators [17]. This is motivated with arguments re-

lated to the dimension of the Lie Algebra. In addition, a method of uniformly

producing random target states in d- dimensional (d = 2 j + 1) Hilbert Space
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according according to the Haar measure on the Lie Group S U(2) is discussed

[19, 24]. With a controllable Hamiltonian and a method for generating random

target states, we created plots like those for the case of spin-1/2 and noticed sim-

ilarities. The QSL seems to be preserved for all N per dimension of the Hilbert

Space within a window of π
Ω

. In addition, the curve of infidelity versus total time

flattens for times greater than the QSL as the number of pulses N is increased.

There is still room for exploration of this problem. Something that could be

investigated is the effect on controllability of the ratio of Ω and κ in the Hamilto-

nian for spins greater than 1/2. In this project, we assumed them to be equal but

it could be that by changing how they compare we will get different dynamics

that can change controllability of the system. The proof of Conjecture 2.4.1 is

something that could potentially be proven analytically.

Overall, these results are interesting because they improve our intuition as

to how resources necessary for quantum optimal control scale with dimension

and see how to achieve ”Pareto efficiency” in the context of control [5]. Having

an understanding of what the best choices for control parameters are can assist

when designing control protocols. The development of new quantum technolo-

gies has demanded a search for control protocols that are scalable, resourceful

and robust. In particular, this is true for quantum computing where optimal

control is often involved in control protocols for implementing unitary transfor-

mations [23, 20].
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APPENDIX A

QUANTUM MECHANICS REVIEW

The matrix representation of the Pauli operators:

σ̂x =

0 1

1 0

 σ̂y =

0 −i

i 0

 σ̂z =

1 0

0 −1

 (A.1)

Any unitary operator of SU(2) can be written as an exponential e−i θ2 ~̂σ·~n. Since

there is a close relationship between SU(2) and SO(3), then it is equivalent to a

rotation in R3 of angle θ about the unit vector ~n:

R~n(θ) = e−i θ2 ~̂σ·~n (A.2)

A simple way of writing a unitary of SU(2):

e−i θ2 ~̂σ·~n = cos(θ)11 − i sin(θ)~̂σ · ~n (A.3)

Angular momentum operators in the x and y directions can be expressed in

terms of raising (Ĵ+) and Lowering (Ĵ+) operators.

Ĵx =
Ĵ+ + Ĵ−

2
(A.4)

Ĵy =
Ĵ+ − Ĵ−

2i
〈n| Ĵy |m〉 = δn,mm (A.5)
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The eigenstates of the raising and lowering operators are:

Ĵ+ | j,m〉 =
√

j( j + 1) − m(m + 1) | j,m + 1〉 = α+
m | j,m + 1〉 (A.6)

Ĵ− | j,m〉 =
√

j( j + 1) − m(m − 1) | j,m − 1〉 = α−m | j,m − 1〉 (A.7)

Matrix representation of the raising and lowering operators:

Ĵ+ =



0 α+
j−1 0 . . . 0

0 0 α+
j−2 . . . 0

...
. . .

0 0 0 . . . α+
− j

0 0 0 . . . 0


Ĵ− =



0 0 0 . . . 0 0

α−j 0 0 . . . 0 0

0 α−j−1 0 . . . 0 0
...

. . .

0 0 0 . . . α−1− j 0


(A.8)
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and Steffen J Glaser. Optimal control of coupled spin dynamics: design
of nmr pulse sequences by gradient ascent algorithms. Journal of magnetic
resonance, 172(2):296–305, 2005.

[13] Ronnie Kosloff, Stuart A Rice, Pier Gaspard, Sam Tersigni, and DJ Tan-
nor. Wavepacket dancing: Achieving chemical selectivity by shaping light
pulses. Chemical Physics, 139(1):201–220, 1989.

35



[14] VF Krotov and IN Feldman. An iterative method for solving optimal-
control problems. Engineering cybernetics, 21(2):123–130, 1983.

[15] Adrian S Lewis and Michael L Overton. Nonsmooth optimization via bfgs.
Submitted to SIAM J. Optimiz, pages 1–35, 2009.

[16] L. Mandelstam and Ig. Tamm. The Uncertainty Relation Between Energy and
Time in Non-relativistic Quantum Mechanics, pages 115–123. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1991.

[17] Seth Merkel. Quantum Control of d-Dimensional Quantum Systems with Ap-
plication toAlkali Atomic Spins. PhD thesis, The University of New Mexico,
06 2009.

[18] R Nigmatullin and SG Schirmer. Implementation of fault-tolerant quantum
logic gates via optimal control. New Journal of Physics, 11(10):105032, 2009.

[19] M. Ozols. How to generate a random unitary matrix, 03 2009.
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