Preliminary Examination: Quantum Mechanics

Department of Physics and Astronomy

University of New Mexico

Spring 2011

Instructions:
• The exam consists of 10 problems (10 points each).
• Where possible, show all work; partial credit will be given if merited.
• Personal notes on two sides of an 8×11 page are allowed.
• Total time: 3 hours.

Useful Information:
1. Pauli sigma matrices: \(\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)
2. \(\int_0^{\pi/2} dx \sin(2x) \sin(x) = -2/3 \)
3. For a particle with mass \(m \) moving under the influence of an attractive one-dimensional square-well potential, \(V(x) = -V_0 \) for \(|x| \leq a \) and \(V(x) = 0 \) otherwise, the energy eigenvalues for the bound states are determined from the transcendental equation

\[
\frac{\sqrt{\lambda - y^2}}{y} = \begin{cases}
\tan y & \text{(even parity)} \\
-\cot y & \text{(odd parity)}
\end{cases}
\]

where \(\lambda = 2ma^2V_0/\hbar^2 \) and \(y = qa \) with \(q = \sqrt{\frac{2m}{\hbar^2}} (V_0 - E) \).
4. Some hydrogen wave functions:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\ell)</th>
<th>(m)</th>
<th>(R_{nm})</th>
<th>(Y_{\ell m})</th>
<th>(\psi_{nm} = R_{nm} Y_{\ell m})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(2 \left(\frac{1}{2a_0} \right)^{3/2} e^{-r/a_0})</td>
<td>(\frac{1}{2\sqrt{\pi}})</td>
<td>(\frac{1}{2\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{3/2} e^{-r/a_0})</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>(\left(\frac{1}{2a_0} \right)^{3/2} \left(\frac{2 - \frac{\pi}{2}}{a_0} \right) e^{-r/2a_0})</td>
<td>(1/2\sqrt{\pi})</td>
<td>(1/4\sqrt{2\pi} \left(\frac{1}{a_0} \right)^{3/2} \left(\frac{2 - \frac{\pi}{2}}{a_0} \right) e^{-r/2a_0})</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(\left(\frac{1}{2a_0} \right)^{3/2} \frac{1}{\sqrt{3}} e^{-r/2a_0})</td>
<td>(\frac{1}{2\sqrt{3}} \cos \theta)</td>
<td>(1/4\sqrt{2\pi} \left(\frac{1}{a_0} \right)^{3/2} \frac{1}{\sqrt{3}} \frac{1}{a_0} e^{-r/2a_0} \cos \theta)</td>
</tr>
<tr>
<td>2</td>
<td>\pm 1</td>
<td>\pm 1</td>
<td>(\left(\frac{1}{2a_0} \right)^{3/2} \frac{1}{\sqrt{3}} \frac{1}{a_0} e^{-r/2a_0})</td>
<td>(\pm 1/2\sqrt{2\pi} \sin \theta e^{\pm \phi})</td>
<td>(1/8 \sqrt{\pi} \left(\frac{1}{a_0} \right)^{3/2} \frac{1}{\sqrt{3}} \frac{1}{a_0} e^{-r/2a_0} \sin \theta e^{\pm \phi})</td>
</tr>
</tbody>
</table>
P1. A particle with mass \(m \) moving to the right with kinetic energy \(E \) encounters a step potential of height \(V \); as shown in the figure. What is the probability that the particle will be reflected if \(E = (4/3) V \)?

\[\text{P2.} \text{ Consider a beam of electrons, to be fired a great distance, } L = 10^4 \text{ km, along the x axis. In momentum-space the electron wavefunction is a strongly peaked Gaussian at } \hbar k_0 \text{ with energy } \hbar \omega = \frac{(\hbar k_0)^2}{2m} = 10 \text{ eV. The real-space wavefunction evolves in time according to} \]

\[\psi(x, t) = A \exp \left[i (k_0 x - \omega t) \right] \exp \left[-\frac{(x - \omega t)^2}{4 (\sigma^2 + \frac{1}{4} \omega^' t)} \right], \]

where \(A \) and \(\sigma \) are constants and \(\omega' = (\partial \omega / \partial k)|_{k=k_0} \) denotes differentiation of \(\omega \) with respect to \(k \).

If the initial uncertainty in the position of an electron is \(\Delta x = 1.0 \text{ mm}, \) approximately what will be \(\Delta x \) on arrival?

P3. The Hamiltonian for an anharmonic oscillator in one dimension is given by

\[\hat{H} = \frac{\hat{p}^2}{2m} + g \hat{x}^4 \]

where \(g \) is positive. Use the uncertainty principle to estimate the ground state energy. Express your answer as a function of \(g, \hbar, \) and the mass \(m \).
P4. A particle with mass m is initially in the ground state of a one-dimensional infinite square well with width a. If the square well is suddenly stretched to a new width $2a$, what is the probability that a measurement of the energy will find the particle to be in the ground state of the new square well?

P5. The motion of a particle with mass m moving in one dimension is described by the Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + mg\hat{x}.$$

Obtain an expression for the expectation value of the position $\langle \hat{x}(t) \rangle$ in terms of the initial expectation values $\langle \hat{p}(0) \rangle$ and $\langle \hat{x}(0) \rangle$.

P6. The nucleus of a gold atom is found to be aspherical, for its rotational motion is described by the Hamiltonian for the axially symmetric rotator,

$$\hat{H} = \frac{\hat{L}_x^2}{2I_1} + \frac{\hat{L}_y^2}{2I_2}.$$

where the moment of inertia $I_1 > I_2$. Sketch the splittings in the rotational energy spectrum for $\ell = 0, 1, \text{ and } 2$.

[Diagram of a gold atom]
P7. The Hamiltonian for a harmonic oscillator is given by

\[\hat{H} = \hbar \omega_0 \left(\hat{a}^\dagger \hat{a} + \frac{1}{2} \right), \]

where the operators \(\hat{a} \) and \(\hat{a}^\dagger \) satisfy the commutation relation \([\hat{a}, \hat{a}^\dagger] = 1 \).

Consider an eigenstate \(|n\rangle \) of \(\hat{H} \) with eigenvalue \((n + \frac{1}{2}) \hbar \omega_0 \). Prove that the two states \(|\phi(-)\rangle = C(-) \hat{a} |n\rangle \) and \(|\phi(+)\rangle = C(+) \hat{a}^\dagger |n\rangle \) are also eigenstates of \(\hat{H} \), where \(C(-) \) and \(C(+) \) are normalization constants. Find their respective eigenvalues and normalization constants.

P8. In quasi one-dimensional conductors, the Coulomb repulsion between conduction electrons is screened out at large distances. All that remains is small phonon-mediated interaction. This interaction is attractive, and is often modeled by a square-well potential.

Consider two electrons in a carbon nanotube, each in the same spin state, their center of mass free to move in the \(x \) direction. Suppose that they are attracted to one another by the square-well interaction \(V(x_1 - x_2) = -V_0 \) for \(|x_1 - x_2| \leq a \) and \(V(x_1 - x_2) = 0 \) otherwise, where the argument \(x_1 - x_2 \) is the difference between the displacements \(x_1 \) and \(x_2 \) of electron 1 and electron 2 respectively. What is the minimum depth \(V_0 \) required for a bound state for the two electron system? You may want to make use of the square-well solution listed in the table.
P9. An electron initially in an eigenstate of \hat{S}_x with eigenvalue $\hbar/2$ is placed in a uniform magnetic field $\vec{B} = B_0 \hat{z}$. At some later time t a measurement is to be made of \hat{S}_y. What is the probability that a value $\hbar/2$ will be found?

P10. If the photon actually had a small mass m^*, electrons and protons would attract one another via a screened (Yukawa) potential of the form

$$U(r) = \frac{-e^2}{4\pi\epsilon_0 r} e^{-\gamma r},$$

where the screening parameter $\gamma = m^*c/\hbar$. This would show up as causing a shift in the hydrogen spectrum.

To first order in γ, calculate the shift in the energy $E_{0,0,0}$ of the hydrogen ground state. What is the first order shift in the energy $E_{n,\ell,m}$ for arbitrary quantum numbers $n, \ell, \text{and} ~ m$?