1. A spin-1/2 particle is in the state,

\[|\psi\rangle = \frac{1}{\sqrt{3}} \{ | \uparrow z \rangle + i\sqrt{2} | \downarrow z \rangle \} , \]

where in this notation \(| \uparrow z \rangle \) labels the state that has spin-up with respect to the \(z \)-axis. Find the probability for a particle in this state to pass through an Stern-Gerlach device oriented along \(+x\) with spin-up followed by a Stern-Gerlach device oriented along \(+z\) with spin-down. Note that \(| \uparrow x \rangle = \frac{1}{\sqrt{2}} \{ | \uparrow z \rangle + | \downarrow z \rangle \} \).

2. A particle is incident from the left \((x < 0)\) on step potential,

\[
V(x) = \begin{cases}
V_0, & x > 0 \\
0, & x < 0
\end{cases}
\]

a) For \(E < V_0 \), sketch the wave function for all \(x \).

b) Let's call the wave function for \(x < 0 \) \(\Psi_- \). Then for \(E < V_0 \) \(\Psi_- \) must be of the form,

\[\Psi_- = e^{ikx} + e^{i\delta} e^{-ikx} , \]

where \(\delta \) is a real constant. Why?

c) What is \(\delta \) in the limit \(V_0 >> E \)?

3. Consider a particle in a 1-D box \(0 < x < a \) which at \(t = 0 \) is in the state,

\[
\psi(x) = \begin{cases}
\sqrt{\frac{3}{a}} \left(2x/a\right), & 0 < x < a/2 \\
\sqrt{\frac{3}{a}} \left(2 - 2x/a\right), & a/2 < x < a ,
\end{cases}
\]

Determine the probabilities \(P_1, P_2 \) to measure the ground state energy \(E_1 \) and the first excited state energy \(E_2 \) at \(t = 0 \). (use \(\int_0^{\pi/2} u \sin(u) du = 1 \))
4. Consider a system with orthonormal basis states $|1\rangle$ and $|2\rangle$. The Hamiltonian in this basis is given by,

$$\hat{H} = \begin{pmatrix} E_0 & -iA \\ iA & E_0 \end{pmatrix}$$

where E_0 and A are real, positive constants. Find the energy eigenvalues and corresponding normalized energy eigenstates. Be clear as to which state goes with which eigenvalue.

5. Consider a spinless particle that is constrained to move on a circle of radius R but free to move around the circle. In a cylindrical coordinate system with the circle in the x-y plane, the wave function depends only on the azimuthal angle ϕ.

 a) Write the Hamiltonian for this system.
 b) What are the energy eigenvalues and normalized eigenstates? Identify all good quantum numbers and any degeneracies.
 c) What is the uncertainty in ϕ for states of definite energy and angular momentum?

6. Consider a particle subject to the harmonic oscillator Hamiltonian,

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m \omega^2 \hat{x}^2}{2}.$$

For an initial state of the particle given by a superposition of energy eigenstates,

$$|\Psi(x, 0)\rangle = \frac{1}{\sqrt{2}}(|n\rangle + |n + 1\rangle).$$

Calculate $\langle x \rangle$ as a function of time.

7. Consider a diatomic molecule as a rigid rotor with moment of inertia I and magnetic moment $\vec{\mu} = -\mu_0 \vec{L}$, μ_0 being a positive constant. The molecule is in a uniform magnetic field \vec{B} along the z-axis.

 (a) What is the Hamiltonian for this system?
 (b) If at $t = 0$ the wave function is,

$$\Psi(0) = \frac{Y_{11} + Y_{10}}{\sqrt{2}},$$

calculate $\langle L_x \rangle$ as a function of time, using

$$\hat{L}_x = \frac{\hat{L}_+ + \hat{L}_-}{2}.$$
8. A particle moving in a central potential $V(r)$ has a Hamiltonian,

$$\hat{H} = \frac{1}{2m}\{\hat{P}_r^2 + \frac{\hat{L}^2}{r^2}\} + V(r),$$

where

$$\hat{P}_r = \frac{\hbar}{i} \frac{\partial}{\partial r}.$$

a) Show that

$$\Psi(r) = \frac{u(r)}{r} Y_{\ell m}(\theta, \phi)$$

satisfies the time independent Schrödinger equation and find the eigenvalue equation for $u(r)$.

b) For an infinite spherical well of radius a, find the ground state and first $\ell = 0$ excited state wave functions (up to a normalization constant) and the corresponding energies.

9. Consider a particle in a 1D box of length a with $0 < x < a$ at the middle of the box. Calculate the first-order correction to the energies for all energy eigenstates due to the perturbation,

$$\hat{H}_{\text{int}} = \alpha \delta(x - a/2)$$

where $\delta()$ is the Dirac delta function and α is a constant.

10. For the $2P_{3/2}$ hydrogen multiplet (states $|n, \ell, j, m_j\rangle$ with $n = 2$, $L = 1$ and $J = 3/2$) calculate the correction due to the Zeeman effect in the weak-field approximation,

$$\hat{H}_B = \frac{eB}{2mc}(\hat{L}_z + 2\hat{S}_z).$$

Note: States of definite total angular momentum $|j, m_j\rangle$ are related to the product states of orbital angular momentum times spin $|\ell, m_{\ell}\rangle |s, m_s\rangle$ according to:

$$|\frac{3}{2}, \pm \frac{3}{2}\rangle = |1, \pm 1\rangle |\frac{1}{2}, \pm \frac{1}{2}\rangle$$

$$|\frac{3}{2}, \pm \frac{1}{2}\rangle = \sqrt{\frac{2}{3}}|1, 1\rangle |\frac{1}{2}, -\frac{1}{2}\rangle + \sqrt{\frac{2}{3}}|1, 0\rangle |\frac{1}{2}, +\frac{1}{2}\rangle$$

$$|\frac{3}{2}, -\frac{1}{2}\rangle = \sqrt{\frac{2}{3}}|1, -1\rangle |\frac{1}{2}, +\frac{1}{2}\rangle + \sqrt{\frac{2}{3}}|1, 0\rangle |\frac{1}{2}, -\frac{1}{2}\rangle$$