Department of Physics and Astronomy, University of New Mexico
E&M Preliminary Examination

Spring 2013

Instructions:

o The exam consists of 10 problems (10 pts each).
o Partial credit will be given if merited.
e Personal notes on the two sides of an 8.5”x 11” sheet are allowed.

o Total time: 3 hours.

Possibly Useful Formulas

e Relation of spherical polar coordinates, (r, 6, ¢), to Cartesian coordinates:
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Unit vectors:
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e Laplacian in spherical polar coordinates:
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e Electric field at position 7 due to a point electric dipole of moment pZ located
at the origin:
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where # and  are two unit vectors of the spherical polar coordinate system.




Stokes’ theorem:
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where S is an open surface bounded by the closed curve C.

Biot-Savart Law for the magnetic field at position 7 due to a steady current
element Id¢' located at position 7
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Fresnel formulas for the amplitude reflection coefficient of a plane wave in-
cident at a planar interface between two dielectrics:
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where L, || refer, respectively, to polarizations perpendicular and parallel to
the plane of incidence. The angles of incidence and refraction are ¢ and
¢, and n, n’ are the refractive indices of the medium of incidence and the
medium of transmission, respectively.




1. A solid cylinder of radius R and height h is polarized along its axis with
polarization density P increasing linearly with height from a value P2
at the bottom face to P2 at the top face. What are the bound surface
and volume charge densities, labeled as oy, o_, and p in the figure

* below? Show by integrating the total bound charge densities that there
is no net charge in the cylinder.
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2. From the uniform bound charge densitiés in the previous problem, cal-
culate the electric field at the center of the cylinder.




3. A perfectly conducting spherical shell of inner radius R encloses a point
electric dipole of moment py = py2 at its center. The electric field at
any point in the empty space enclosed by the shell, as one may show, is
equal to the vector sum of the field at that point due to the point dipole
and a uniform electric field FyZ2 parallel to the dipole orientation. (The
latter is the contribution to the total field from charges induced on the
shell surface.) Calculate the value of Fy such that the net electric field
in the interior is normally oriented at any point on the inner surface
of the shell, as required by the conducting boundary condition. (Hint:
The Cartesian unit vector 2 may be expressed as cos 67 —sin 64 in terms
of spherical basis vectors.)

4. The electrostatic potential of an electric dipole of moment 7 at a point
a vector separation 7 away has the form V = 5’ #/(4mer®). Show by
calculating its Laplacian that this potential obeys the Laplace equation
at all points except where the dipole is located.




5. Consider the magnetic field inside a cylindrical bar magnet of radius
R and height. L. Let its magnetization M be uniform. Calculate the
magnetic field at the center of the magnet in two extreme limits, L >>
Rand L << R.
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6. A charge ¢ moving relativistically through interstellar space finds itself
caught in a magnetic field B. Describe the possible forms of motion
of the charge, assuming the magnetic field to be spatially uniform. By
choosing a suitable origin of coordinates, show that the components of
the linear momentum of the charge at position 7 that are transverse to
B may be expressed as | = ¢’ X B. Identify explicitly your choice of
the origin.




7. For the previous problem, show by means of the Stokes theorem that
the line integral of the linear momentum vector of the charge along
any closed path C, i.e., §o7- dl_: is proportional to the magnetic flux
threading the path. Calculate the constant of proportionality.

8. Show that under the combined action of a constant electric field and a
constant magnetic field, a charge g when movmg with a certain velocity
experiences no net force. For E = E# and B = By, with F < c¢B,
calculate the possible velocities of the charge for which it experiences
no net force. Can this happen when F > ¢B? If not, then describe the
nature of the motion of the charge in this case. For each of the two
cases, is there a Lorentz frame in which the complete electromagnetic
field is either fully electric or fﬂy magnetic?
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9. A monochromatic plane electromagnetic wave of angular frequency w
is incident normally from vacuum onto the surface of a material with
a complex dielectric permittivity ¢’ + i€”, where ¢ >> €’ are both real
and positive. For a thick material, calculate the fraction of radiation
energy that is (i) reflected, (ii) transmitted, and (iii) absorbed by the
material. Calculate also the characteristic penetration depth of the
radiation into the material.




10. Consider a classical model of a hydrogen atom in which an electron

(mass: m, charge: —e) orbits around an infinitely massive proton in
a circular orbit of radius r in a plane. That such an atom must be
unstable follows from the fact that the electron, since it is accelerated
in circular motion, must radiate energy continuously according to the
Larmor radiation formula,
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where @ is its acceleration. Neglect radiation first and use Newton’s
second law to determine a in terms of e, m, and r. Assume non-
relativistic motion. What is the relation between the total mechanical
energy U (beware it is negative!) of the electron and its orbital radius
r? Now apply the energy conservation law,

dU/dt = —P,

to this relation to derive a simple first-order differential equation con-
necting r to the time ¢. Solve that equation to show that in an atom of
initial orbital radius ag the electron will fall into the proton in a time
equal to a3 /(4r2c), where 1o = €2/(4megmc?) is the so-called classical
radius (not orbital radius) of the electron. What assumption(s) about
the classical atom, as set out in this problem, might eventually break
down even at the classical level as the electron spirals into the proton?




