Department of Physics & Astronomy
University of New Mexico

CQuIC Seminars

Cavity-enabled measurements and interactions in neutral atoms

Presented by Zhenjie Yan

Control over interactions and measurements in quantum systems is crucial for applications such as quantum simulation and computation. In this talk, I will highlight our recent progress in realizing nondestructive readout and long-range interactions in atomic tweezer arrays using a strongly coupled optical cavity. Through selectively coupling a single atom with the cavity mode, we achieve a rapid mid-circuit measurement without perturbing the quantum coherence of the other atoms. Conversely, the collective emission from multiple atoms into the cavity can be coherently enhanced or suppressed. Here, we demonstrate atom-by-atom control over the collective light-atom interactions, observing both super- and subradiant cavity emissions from the constructed atomic ensembles. I will then discuss how we engineer long-range mechanical interactions via photon exchange and present our recent observation of a self-organization phase transition in a mesoscopic system. Finally, I will discuss how the cavity can be used to monitor and manipulate strongly interacting quantum gases, opening new avenues for experimental research in quantum many-body physics

3:30 pm, Thursday, April 25, 2024
PAIS-2540, PAIS

Disability NoticeIndividuals with disabilities who need an auxiliary aid or service to attend or participate in P&A events should contact the Physics Department (phone: 505-277-2616, email: physics@unm.edu) well in advance to ensure your needs are accomodated. Event handouts can be provided in alternative accessible formats upon request. Please contact the Physics front office if you need written information in an alternative format.

A schedule of talks within the Department of Physics and Astronomy is available on the P&A web site at http://physics.unm.edu/pandaweb/events/index.php