Department of Physics & Astronomy
University of New Mexico

OSE Seminars

Carrier dynamics in III-nitride light-emitting diodes: An RF approach to understand efficiency issues

Presented by Dr. Arman Rashidi, OSE Alumni and Postdoctoral Fellow at CHTM

III-nitride light-emitting diodes (LEDs) are now ubiquitous in solid-state lighting (SSL) systems. Despite the significant advancement of III-nitride LEDs, the origins of fundamental challenges such as efficiency droop, thermal droop, and green gap are not completely understood. In addition, emerging applications such as micro-pixel LED displays and visible-light communication (VLC) require efficient LEDs capable of high-speed modulation. Studies of carrier dynamics are essential to better understand the fundamental efficiency challenges and enable the design of high-efficiency, high-speed LEDs. Among approaches to characterize the carrier dynamics in LEDs, electrically injected methods are preferred over optically pumped methods to capture the carrier dynamics under typical operating conditions. In this talk, a comprehensive method is developed to study carrier dynamics in electrically injected LEDs using small-signal RF measurements and differential rate equation analysis. This method represents an entirely new approach to characterizing the classic DC properties of III-nitride LEDs and enables the simultaneous determination of the dynamic properties. This method enabled the determination of the injection efficiency, carrier density in the active region, modulation bandwidth and differential carrier lifetime, carrier escape lifetime, radiative and non-radiative recombination rates, and RC time constant in LEDs. Understanding the above properties under electrical injection provides valuable information about the origins of fundamental efficiency challenges and aids in the co-optimization of modulation bandwidth and efficiency. This approach is expected to accelerate the development of LEDs tailored for micro-pixel displays and VLC.

11:00 am, Thursday, February 21, 2019
Room 101, Center for High Tech Materials
Science and Technology Park - South Campus

Disability NoticeIndividuals with disabilities who need an auxiliary aid or service to attend or participate in P&A events should contact the Physics Department (phone: 505-277-2616, email: physics@unm.edu) well in advance to ensure your needs are accomodated. Event handouts can be provided in alternative accessible formats upon request. Please contact the Physics front office if you need written information in an alternative format.

A schedule of talks within the Department of Physics and Astronomy is available on the P&A web site at http://physics.unm.edu/pandaweb/events/index.php