Department of Physics & Astronomy
University of New Mexico

CQuIC Seminars

Composite pulse sequences for Ion Trap quantum computation

Presented by Kenneth Brown, Georgia Tech

The control of quantum systems is limited by unwanted interactions with the environment and uncertainties in the applied control fields. For ions these uncertainties include unwanted fluctuations in the intensity and the frequency of the electromagnetic field used to control the qubit. For unknown but static errors on the time scale of the experiment, compensating composite pulses sequences can be used to minimize the effect of these errors. In this talk, I will describe the general method of compensating composite pulse sequences for single qubit and multi-qubit systems. I will then discuss two experiments performed in collaboration with GTRI using composite pulse sequences. The first experiment uses known pulse sequences to effectively reduce the spatial variation in a microwave field. The second experiment tests a family of narrowband composite pulse sequences that we have developed. Narrowband pulse sequences can improve ion addressing in a chain by minimizing the effective rotation on neighboring ions. The new pulse sequences are an improvement in both sequence time and crosstalk minimization.

3:30 pm, Thursday, October 3, 2013
PAIS-2540, PAIS

Disability NoticeIndividuals with disabilities who need an auxiliary aid or service to attend or participate in P&A events should contact the Physics Department (phone: 505-277-2616, email: physics@unm.edu) well in advance to ensure your needs are accomodated. Event handouts can be provided in alternative accessible formats upon request. Please contact the Physics front office if you need written information in an alternative format.

A schedule of talks within the Department of Physics and Astronomy is available on the P&A web site at http://physics.unm.edu/pandaweb/events/index.php