Jump To Date
View By Semester
View By Series
Add An Event


Center for Astrophysics Research and Technologies Seminar Series Information

 

Events Calendar

Quantum Engineered Interband Cascade Structures for Optoelectronic Devices

Thursday May 12, 2016
11:00 am


 Presenter:  Professor Rui Q. Yang, University of Oklahoma School of Electrical and Computer Engineering
 Series:  OSE Seminars
 Abstract:  Interband cascade (IC) structures were originally introduced for achieving efficient mid-infrared (IR) lasers [1]. By taking advantage of the broken band-gap alignment in type-II InAs/Ga(In)Sb quantum wells to form interband cascade stages, significant progress has been achieved in the development of high-performance IC lasers with low power consumption [2-3], including successful operation of an IC lasers in Curiosity Rover on Mars and commercial availability. Recently, quantum engineered IC structures have been explored for other optoelectronic devices such as infrared photodetectors and photovoltaic cells with certain advantages [4-7]. Combination of interband transition and fast carrier transport in quantum engineered IC structure provides more flexibilities and advantages to achieve high device performance for photodetectors at high temperatures. The unique features and status of these IC structures and relevant optoelectronic devices will be reviewed and discussed with recent experimental results in IC infrared photodetectors (ICIPs).


1. R. Q. Yang, at 7th Inter. Conf. on Superlattices, Microstructures and Microdevices, Banff, Canada, August, 1994; Superlattices and Microstructures 17, 77 (1995); =93Novel concepts and structures for infrared lasers=94, chapter 2 in Long Wavelength Infrared Emitters Based on Quantum Wells and Superlattices, M. Helm, editor, Gordon and Breach, Singapore, 2000.
2. I. Vurgaftman, R. Weih, M. Kamp, J R Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell and S. H=F6fling, =93Interband cascade lasers=94, J. Phys. D: Appl. Phys. 48 123001 (2015).
3. L. Li, Y. Jiang, H. Ye, R. Q. Yang, T. D. Mishima, M.B. Santos, and M. B. Johnson, =93Low-threshold InAs-based interband cascade lasers operating at high temperatures,=94 Appl. Phys. Lett, 106, 251102 (2015); and references therein.
4. R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, =93Interband cascade infrared photodetectors with superlattice absorbers=94, J. Appl. Phys. 107, No. 5, 054514 (2010).
5. H. Lotfi, R. T. Hinkey, L. Li, R. Q. Yang, J. F. Klem, M. B. Johnson, =93Narrow-Bandgap photovoltaic devices operating at room temperature and above with high open-circuit voltage=94, Appl. Phys. Lett, 102, 211103 (2013).
6. R. T. Hinkey and R. Q. Yang, =93Theory of Multiple-Stage Interband Photovoltaic Devices and Ultimate Performance Limit Comparison of Multiple-Stage and Single-Stage Interband Infrared Detectors=94, J. Appl. Phys. 114, 104506 (2013).
7. N. Gautam, S. Myers, A. V. Barve, B. Klein, E. P. Smith, D. R. Rhiger, L. R. Dawson, and S. Krishna, "High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice," Applied Physics Letters 101, 021106 (2012).
 Location:  Room 103, Center for High Tech Materials

Disability Notice If you need an auxiliary aid or service to attend any Department of Physics and Astronomy event, please contact the department (phone: 505 277-2616; email: physics@unm.edu) as far in advance as possible to ensure you are accommodated.