Spherical Shell v/s Cylindrical Shell

Solution:

The correct answer is \mathbf{b}.)
From Question \#3, we know that: $v=\sqrt{\frac{2 g h}{1+\left(I / m r^{2}\right)}}$
... (1)
Thus, for the cylindrical shell $\left(I=m r^{2}\right)$, from (1),

$$
\begin{equation*}
v=\sqrt{g h} \tag{2}
\end{equation*}
$$

Spherical Shell v/s Cylindrical Shell

And, for the spherical shell $\left(I=\left(\frac{2}{3}\right) m r^{2}\right)$, from (1),

$$
\begin{equation*}
v=\sqrt{\left(\frac{6}{5}\right) g h}=1.095 \sqrt{g h} \tag{3}
\end{equation*}
$$

Clearly, from (2) and (3), the spherical shell reaches the bottom faster.

