Condition for Ball Losing

Contact w/ Loop

Solution:

The correct answer is e.)
The net force on the ball is the centripetal force acting on it, so that:

$$
(W+N)=F_{n e t}
$$

But if the ball loses contact, the normal force vanishes, i.e., $N=0 \Rightarrow F_{\text {net }}=W$

$$
\Rightarrow\left(\frac{\eta v_{t}^{2}}{(R-r)}\right)=\eta g
$$

Condition for Ball Losing Contact w/ Loop

Thus,

$$
v_{t}^{2}=g(R-r) \Rightarrow v_{t}=\sqrt{g(R-r)}
$$

Note that the expression for centripetal force requires the term $(R-r)$, since the radius of the ball is not negligible, and the speed v_{t} refers to the speed of the center of mass of the ball at the top of the loop. Thus, the effective radius for the center of mass of the ball is $(R-r)$, as opposed to just R.

