Maximum Horizontal Range

Solution:

The correct answer is \mathbf{b}.)
From Question \#3, we know that if the initial launch height is the same as the height at which the projectile lands, the horizontal range is given by the expression:

$$
R=\left(\frac{v_{0}^{2} \sin (2 \theta)}{g}\right)
$$

Maximum Horizontal Range

Clearly, for a given value of initial velocity $\mathrm{v}_{0}, \mathrm{~g}$ is a constant, so that R is maximum when $\sin (2 \theta)$ is maximum, i.e., $\theta=45^{\circ}$.
Under this condition (launch height = final height), the expression for maximum horizontal range simplifies to:

$$
R_{\max }=\left(\frac{v_{0}^{2}}{g}\right)
$$

Again, the above expression is correct only if the final height of the ball equals its launch height.

