Total Time of Flight of a Projectile

Solution:

The correct answer is a.)
Since the x - component of motion is not affected by gravity, and since the x and y components can be considered individually, we can reduce the problem to the case where the object is shot straight upwards. Clearly, the total time of flight is given by (ref: Question 2):

$$
T=\left(\frac{2 v_{0 y}}{g}\right)
$$

Total Time of Flight of a Projectile

Note that choice c.) is incorrect, because the speed v_{0} in that case is the initial speed of the object, as opposed to just the y-component of initial speed.
Also note that if launch height \neq final height and the ball is shot from an initial height h above the floor, and lands at a height h_{0} above the floor (h_{0} $<h$), the time of flight t would have to be found by solving the quadratic:

$$
\left(h-h_{0}\right)=v_{0 y} t+\left(\frac{1}{2}\right)(-g) t^{2}=\left(v_{0} \sin \theta\right) t-\left(\frac{1}{2}\right) g t^{2}
$$

