Centripetal Acceleration at the Bottom of the Swing

Recall that an object undergoing circular motion at tangential speed v in a circular path of radius r feels a centripetal force, and hence, a centripetal acceleration given by $a_{c}=\left(v^{2} / r\right)$. Since the bob moves in a circle of radius given by the length of the pendulum, it has a centripetal acceleration:
а.) $m g$
b.) $\sqrt{\frac{r g}{m}}$
c.) $2 g$
d.) $m g r$
е.) 0

