Centripetal Acceleration at the Bottom of the Swing

Solution:

The correct answer is c.)
Applying the Principle of Conservation of Energy, the speed of the bob at the bottom of the swing may be found to be $v=\sqrt{2 g r}$

$$
\Rightarrow\left(\frac{v^{2}}{r}\right)=\left(\frac{(\sqrt{2 g r})^{2}}{r}\right)=2 g
$$

Centripetal Acceleration at the Bottom of the Swing

Note that this result could have been directly obtained from the equation for Conservation of Energy:

$$
\left(\frac{1}{2}\right) m v^{2}=m g r \Rightarrow\left(\frac{v^{2}}{r}\right)=2 g
$$

Interestingly, this value of centripetal acceleration depends neither on the length of the pendulum, nor on its mass. However, this is true only if the bob is released from a perfectly horizontal position.

