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We report numerically and analytically estimated values for the Hurst exponent for a recently proposed
non-Markovian walk characterized by amnestically induced persistence. These results are consistent with
earlier studies showing that log-periodic oscillations arise only for large memory losses of the recent past. We
also report numerical estimates of the Hurst exponent for non-Markovian walks with diluted memory. Finally,
we study walks with a fractal memory of the past for a Thue-Morse and Fibonacci memory patterns. These
results are interpreted and discussed in the context of the necessary and sufficient conditions for the central
limit theorem to hold.
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I. INTRODUCTION

Random walks are ubiquitous in the literature because of
their applications to modeling a large variety of natural or
human induced phenomena. They particularly are important
in the study of phenomena that display log-periodicity, which
is a main point of this work, and may appear, for example, in
economic crashes and earthquakes �1�. In the models pre-
sented here, log-periodicity appears because of the loss of
recent memory, what we termed amnestic effect. A variety of
diffusive systems, from particles going through porous media
up to epidemics and also ideas �or information� may present
memory with gaps. Therefore, we introduced random walks
with memory gaps or, what we called “memory dilution,” in
order to simulate these systems. We verified that all these
memory effects may cause anomalous diffusion with similar
behaviors.

Before the pioneering and revolutionary contributions of
Paul Lévy �2�, the conventional wisdom held that the central
limit theorem �CLT� remained valid for most if not all sto-
chastic processes. Therefore, alternatives to Gaussian distri-
butions and normal diffusion, characterized by mean squared
displacement scaling linearly with time, did not draw much
attention or captivate the imagination of scientists. The cen-
tral limit theorem holds, under certain conditions, that sums
of N random variables follow a Gaussian distribution in the
limit of large N. There are three important conditions for the
CLT to hold true: �i� independence of the random variables,
�ii� finite variances of each random variable, and a lesser
known axiom �iii� the variances of each random variable
divided by the variance of the sums must converge to zero
for N→�. Anomalous diffusion and Lévy statistics become
relevant when one or more conditions fail. We briefly exam-
ine these possibilities. Violation of condition �iii� leads to the
somewhat expected—if not trivial—result that the sum be-
comes dominated by those terms whose variance does not
contribute infinitesimally to the sum. Violations of condition
�ii� lead to a generalization of the CLT and the skew Lévy
�-stable distribution takes on the role of the Gaussian distri-
bution. The focus of our work represents the breakdown of

condition �ii� above, which we further explore through a
phase diagram analysis.

Without loss of generalization and in order to render the
discussion more relevant, let us consider time series. What
happens to the sum x of N consecutive elements of such
series when condition �ii� fails? If the random variables fail
to meet the condition of statistical independence, then this
implies the existence of correlations in the series of random
variables. We can categorize correlations as either, having
short range, i.e., a finite correlation time or length exists
beyond which the variables become essentially statistically
independent, or long range, in which case the correlations
decay as power laws. Power laws f�x��x� have no charac-
teristic scale in the sense that a scale transformation leaves
the power-law intact: f��x�� f�x���. Short-range correla-
tions correspond to Markov processes and therefore a renor-
malization by an appropriate scale leads to a recovery of
normal diffusion, since the CLT becomes valid.

On the other hand, long-range correlations imply underly-
ing non-Markovian processes. No scale transformation can
guarantee an elimination of the correlations or a recovery of
normal diffusion. A number of situations can arise. On the
one hand, the sums of the random variables might still con-
verge to a Gaussian distribution, but the variance might not
grow linearly with N. This corresponds to fractional Brown-
ian motion. The mean squared displacement scales as

�x2� � N2H, �1�

but now the Hurst exponent H no longer equals 1/2. Super-
diffusion corresponds to H�1 /2 and subdiffusion to H
�1 /2. Another possibility is that the correlations prevent
convergence to any distribution whatsoever, i.e., the stability
property �e.g., Lévy stability, or Gaussian stability� disap-
pears.

In this context, the recently proposed model of a non-
Markovian walk and its exact solution have revealed new
mechanisms by which correlations and memory can disrupt
the behavior expected from the CLT. The unexpected sur-
prise concerned how loss of memory can, in fact, increase
the Hurst exponent. In the next section, we review the model
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and summarize the methodology. In Sec. III we report our
numerical results, interpret and discuss them and finally in
Sec. IV we provide concluding remarks.

II. MODEL AND METHODS

We have adapted �3� a novel approach introduced by
Schütz and Trimper �4� for studying walks with long-range
memory �5–8�, for studying memory loss. For the sake of
completeness, we repeat here some results obtained in Ref.
�9�, and get new analytical results for the second moment
and correlations.

Consider the iterative procedure to calculating the posi-
tion of a random walker,

xt+1 = xt + vt+1, �2�

where vt= �1. Through the generation of random numbers
with uniform distribution, we randomly select at time t, a
previous time 1� t�� ft �0� f �1�. Thus, one chooses the
current step direction vt based on the value of vt�, using the
following rule: the walker repeats the action taken at time t�
with probability p, and with probability 1− p the walker goes
in the opposite direction −vt�. Without generality loss, we fix
the first step direction to the right, i.e., v1=+1.

Now, starting at t=0, let the memory range be L
� int�ft�+1, where int�x� denotes the integer part of x, for
0� f �1 �L= t for f =1�. We could write an expected value
for vt+1 as vt+1

e =�
xL−x0

L , where �=2p−1. Thus, considering
x0=0, we find the following differential equation for the first
moment in the asymptotic limit �see Ref. �9� for details�:

d

dt
�xt� =

�

ft
�xft� . �3�

Using an expansion in the form �xt�=	iAit
�i sin�Bi ln�t�

+Ci� in Eq. �3�, we obtain a system of transcendental equa-
tions linking B and � given by

� = �f�−1 cos�B ln f� �4�

B = �f�−1 sin�B ln f� . �5�

We analyze now the possible solutions for the system. For
��0, there exists oscillating solutions with a threshold de-
fined by a continuous set of values �p , f�. Consider the case
without oscillations �B=0�. Thus, Eq. �4� reduces to

� = �f�−1, �6�

which has solutions only for f � f0�p�. Kenkre �10� obtained
the critical line for the onset of log-periodicity given by

− � ln�1/f0� = f0/e , �7�

represented by a dashed line in Fig. 1�a�. Using the Lambert
W function �see Appendix�, we find an alternative proof for
Eq. �7�.

For �	0, Eq. �4� has a maximum value of � for B=0,
which also satisfies Eq. �5�. As the term with the largest �
dominates in any expansion, thus B=0 should govern the
long term behavior. In agreement with this prediction, we

find no oscillations in our simulations �not shown�. Note that
for the ballistic case �p=1� the solution �B ,��= �0,1� is exact
for any f . For ��0 and ��1 /2 we obtain superdiffusion,
but log-periodicity only exists for ��0, as we will see be-
low along with the analysis of the second moment.

Next, we study the solutions of the differential equation
for the second moment:

d

dt
�xt

2� = 1 +
2�

ft

�t� , �8�

where 
�t�= �xtxft� represents the correlation between the po-
sition at time t and that one at the end of the memory range.
As 
�x�
� ��x2��1/2, follows that there exists a function F�t�
such that
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FIG. 1. �Color online� �a� Complete phase diagram showing the
four phases �9�, plotted according to the exact solutions given by
Eqs. �11� and �21�. The dashed line f0�p� delineates the threshold
for log-periodicity and cleaves the nonpersistent regime into two
�Eq. �7��. The dark region represents numerical results with H
�0.85, having strong log-periodicity, because a0 and �0 are small
in this region. �b�, �c�, and �d� show first, second moments and
correlation, respectively, for p=0.1 and f =0.15. We normalized the
first moment by t0.5 and the correlation by t2H, while was taken the
logarithm of the second moment to the base two. Points represent
the simulations and continuous lines fittings with the functions
shown. The total number of steps �maximum time� was 16 777 216,
and the number of runs was 5000 to obtain the averages. We can
easily verify the relations �16� and �17� in the text. Note the con-
sistency between the parameters B2=B ln�2�, C and H, because the
fittings were accomplished independently; also, we can verify that
H=� considering the precision of the numbers.
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�t� = F�t���xt
2��xft

2 ��1/2, �9�

with −1�F�t��1.
For ��0 �p�1 /2� the oscillations disappear, and

F�t→��=1. Thus, we can show that, asymptotically, the
transcendental relationship for the Hurst exponent is

H = �fH−1. �10�

This result corresponds to Eq. �6� with �=H. For H=1 /2, we
obtain the curve

f = 16�p −
1

2
�2

, �11�

that separates the diffusive and anomalous regions for p
	1 /2 in the plane �p , f� �see Fig. 1�a��. The case f =1 gives
pc=3 /4, in agreement with Ref. �4�.

For ��0, we follow a different �more complete and de-
tailed� approach from that one used in our recent work �9�.
We write the following series expansions to the second mo-
ment and correlation:

�xt
2� = 	

i=0

�

ai sin2�bi ln�t� + ci�t2Hi; �12�


�t� = 	
i=0

�

�i sin�bi ln�t� + ci�sin�bi ln�ft� + ci�t2Hi. �13�

For the case f =1, we have 
�t�= �xt
2� leading to �i=ai and

bi=0, thus recovering the full memory result. Another simple
condition with an exact result happens for �=0 �p= 1

2 �, from
which we trivially obtain �xt

2�= t. We can then write xt=xft
+
xt which gives 
�t�= �xft

2 �+ �xft
xt�. However, since in this
case xft and 
xt, are independent random variables, we have
�xft
xt�= �xft��
xt�=0. Therefore 
�t�= �xft

2 � that gives 
�t�
= ft, from which follows ai=�i=0 for i�0, a0 sin�c0�=1,
b0=0, �0= f , H0= 1

2 , and from Eq. �9� we obtain F�t�= f1/2.
Note that F�t�=1 only for f =1, showing a discontinuity for
this function with the parameter � for f �1.

Through simulation experiments we could find that the
main contributions for the leading terms of the second mo-
ment and correlation are given by

�xt
2� � 
a0 + a1 sin2�b1 ln�t� + c1��t2H, �14�


�t� � 
�0 + �1 sin�b1 ln�t� + c1�sin�b1 ln�ft� + c1��t2H.

�15�

Numerical simulations have shown that for H�0.85,
there exists a region in the plane f vs p where a0 and �0
are negligible. The moments and correlations oscillate with
large amplitudes �strong log-periodicity—see small dark
area in Fig. 1�a��, in agreement with results of our recent
work �9�; as we approach of the critical line, the terms
a0t2H0 and �0t2H0, and higher-order terms in the expan-
sions become important. Exactly on the critical line,
we obtain a marginally superdiffusive solution: �xt

2��
a0
+a1 sin2�b1 ln�t�+c1��t ln�t� and 
�t��
�0+�1 sin�b1 ln�t�
+c1�sin�b1 ln�ft�+c1��t ln�t�.

Using the relations �14�, �15�, and �9�, we can show that

�1 = a1fH �16�

for the case �0=a0=0; however, based on results from simu-
lations �see Figs. 1�b�–1�d� as an example� we assume that
this is a general result.

For 2H�1, substituting Eqs. �14� and �15� in Eq. �8�, we
obtain

a0 =
��0

Hf
, �17�

H = �fH−1 cos�b1 ln f� , �18�

b1 = �fH−1 sin�b1 ln f� . �19�

We assume that the dominant terms of �xt� and �xt
2� have the

same “period” and phase difference, so that b1=B and c1
=C. Thus, the Eqs. �4� and �5� turn out to be identical to the
Eqs. �18� and �19�; therefore, we obtain the expected relation
H=�. Indeed we conjecture that for walks lacking subdiffu-
sion, �	1 /2 always implies H=�. This result was first con-
jectured based on exact results for f =1, but now we rigor-
ously proved for f �1, a quite general model without
subdiffusion. This seems to hold for any anomalous diffu-
sion, although a general proof is still lacking. However, we
can do the following approach: for a ballistic motion we
have H=� trivially; so, assuming that this result is valid for a
motion nearly ballistic is reasonable, i.e., with a Hurst expo-
nent given by H=�=1−�, with � very small. Thus, by induc-
tive reasoning we can conclude that this may be true up to
the transition line. For values of f greater than fc, i.e., above
the critical line we have �1=a1=0 and a0=1+2 �

f �0. Thus,
the relations �18� and �19� are not valid anymore, and H
turns out equal to 1/2. For ��1 /2 we have that H��, show-
ing how important are the fluctuations and the higher mo-
ments, besides raising questions about possible multifractal
scaling �11�. From Eqs. �18� and �19�, without loss of gener-
ality, by choosing the positive root we obtain: B= ��2f2H−2

−H2�1/2, and B /H=tan�B ln�f�� what leads to the expression

H tan�ln�f���2f2H−2 − H2� = ��2f2H−2 − H2 �20�

for �	1 /2 and H=1 /2 otherwise; obviously the correct H
values must give positive radicands. The solution of Eq. �20�
with H=�=1 /2 corresponds to the separation line of the dif-
fusive and anomalous phases �see Fig. 1�a�� given by

2��c
2

fc
−

1

4
= tan�ln�fc���c

2

fc
−

1

4
� . �21�

At p=0, we obtain the critical value of fc�0�=0.3284 for the
onset of log-periodic superdiffusion. We note that �pc , fc�
= �1 /2,0� represents a multicritical point. Thus, the onset of
superdiffusion represents a second, smoother, phase transi-
tion. All phase transitions together yield a total of four dif-
ferent phases.

Now, we discuss the particular case of constant memory
range L that has a trivial, ballistic solution in the asymptotic
limit for p�1 /2. The equation for the first moment is
d
dt �xt�= �

L �xL�, which gives �xt��At, where A= �
L �xL� is con-
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stant. This is sufficient to conclude that the diffusion is bal-
listic, however, it is interesting to analyze the second mo-
ment: d

dt �xt
2�=1+ 2�

L �xLxt�. As L is fixed, in the limit t→�, xL

and xt become uncorrelated variables, thus, for finite but very
large t we can write �xLxt���xL��xt�. Therefore, we obtain
�xt

2���At�2= �xt�2, i.e., H=�=1; note that this result is valid
also for f =0 �L=1�.

To generalize still more the model, we introduced differ-
ent memory profiles, i.e., different distributions of points for
the walker to remember inside the memory range given by
L= ft. We, thus, introduced the dilution idea �represented by
d�, i.e., the walker remembers only part of the total number
of steps given in the time interval �0,L�.

We accomplished three types of dilutions: �1� random, �2�
Thue Morse �12�, and �3� Fibonacci. In the first memory
profile with dilution some points inside the interval �0,L� are
chosen randomly and they are cleaned from the memory; in
the dilution d=0.1, for instance, one erases 10% of the
memory. Particularly, for d=0 the model reduces to the ini-
tial model without dilution; d=1 is the case totally without
memory, i.e., the walker does not remember of any point.

For the second profile, we adopted the binary Thue
Morse’s sequence, generated by the substitutions: 0→01
and 1→10, beginning with 1, giving: T
=11010011001011010010110. . ., where the sequence is tem-
poral, and one turns the memory off in the time position that
the digit is zero.

Finally, the third profile, was the Fibonacci sequence, gen-
erated by the rule T�n+1�=T�n�+T�n−1�, being T�1�=0 and
T�2�=1 the first two Fibonacci numbers. Thus, we store the
vT values in the memory, of the steps taken at instants of
time: T=1–2–3–5–8–13–21. . .; so, we can only remember
the actions taken at time instants belonging to this sequence.
We can easily see that the dilution causes a walk with an
effective memory range L�= �1−d�L.

In the following, we describe the main motivations for the
choice of these three protocols. Random dilution is a pattern
of facile use to control the densities of remembered points,
and it is a simple example of a pattern stochastically gener-
ated. The other two are examples of nonrandom patterns; the
first one, Thue-Morse is equivalent to a dilution of 50% in-
tended to represent nonrandom middle and the second one,
the Fibonacci, very high dilutions. Additionally, these se-
quences are ubiquitous, appearing everywhere, from nature
to computers �memory allocation�.

To analyze the behavior of the random walks, besides the
moments, another important quantity is the persistence
length w, that here we defined as the number of steps given
by the walker in the same direction until the point that the
walker turns back. The distribution of the persistence lengths
identifies the types of regimes: Gaussian and non-Gaussian.
Normal diffusions have Gaussian propagators, so they
present exponential persistence length distributions, whereas
anomalous diffusion may present nonexponential distribu-
tions �e.g., Lévy walks present power-law tailed persistence
length distributions�. When anomalous diffusions have
Gaussian propagators, we expect that they will present expo-
nential persistence length distributions. In the next section
we show the results and discussion.

III. NUMERICAL RESULTS AND DISCUSSION

We accomplished many simulations with several f and p
parameters, but here we present only those that are relevant
to our analysis. For the figures from 2 to 5 we analyze results
for the model without dilution.

In Fig. 2 we see the behavior of the second moment with
the time t showing log-periodicity for small values of f . The
cause of the oscillations is because the walker always tries to
do the opposite of his action taken in a distant past �3�. Now,
in Figs. 3�a� and 3�b� we plot the position of the walker as a
function of time, with a clear display of log-periodicity. In
Fig. 3�b� we see the effect amplified through the normaliza-
tion of the position with the traditional random walk scale
without correlations. In Fig. 4 we plot H versus f . We see
that for p�0.5+�fc /4 �see Eq. �11�� and f � fc the walker
always has superdiffusive behavior. Thus, the threshold for
the parameter p is p=0.75 �fc=1�, starting from where the
behavior of the walker is always superdiffusive for any value
of f . For p�0.5, the line that separates normal diffusion
from anomalous diffusion is given by the solution of the
transcendental Eq. �21�. The discrepancies shown in Fig. 4,
between theoretical values and simulations, are due to con-
vergence difficulties generated by the long-range memory in
areas close to areas of phase change or to the critical point
pc=0.75.

In Fig. 5, we show the Hurst exponent versus p for several
values of f . For any f �except f =0� a critical value for p
exists, starting from where the walker becomes superdiffu-
sive �see the expressions �11� and �21��; for f =0, normal
diffusion only happens at p=1 /2. What was truly unex-
pected, was the finding of superdiffusive behavior within the
negative feedback region �p�1 /2�. We clearly see the onset
of superdiffusion at a critical value of f persisting all the way
down to f =0, even for p�1 /2. In this region the behavior of
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FIG. 2. Much loss of memory �except f =0� and small values of
p, drives to large oscillations to the second moment. For small
values of f , the walker tends to go far away, but his �or her� walk is
dampened for small values of p, that does the walker prefer to make
the opposite of what he �or she� did in a past time, causing oscilla-
tions to the moments. Observe that oscillations do not exist for f
=0.1 and p=0.9, the walker will always want to do what he �or she�
did in the past, without so much indecision. Averages were accom-
plished with 1000 runs reaching 3 276 800 total time units each.
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the walker becomes log-periodic, and we cannot eliminate
the correlations with same behavior that appear, through
renormalization, or by any scale transformation. For f =1 the
model reduces to the model of Schütz and Trimper �4� for
which the critical point happens at p=3 /4 where the walker
becomes superdiffusive.

Starting to analyze the more general memory profile mod-
els, we notice in Fig. 6 that the dilution did not affect quali-

tatively the results when compared with those of undiluted
memory, shown in Fig. 5. In Fig. 7 we show the Hurst ex-
ponent for several values of f and d; notice that the scaling
behavior might be the same for all dilutions. The small
changes observed should be due to finite size effects, i.e.,
size of the system and size of the sample of independent
walks used for the average.
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− f�t of the recent past, for a total time of 3 276 800 steps. For the
case f =0, the walker does not remember anything, except the first
step; his �or her� behavior is superdiffusive, except to p=0.5, where
the exponent H drops abruptly to 0.5, according to the exact result.
For small values of f �0.1 and 0.2�, even for p�0.5, we can see
persistence �H�0.5�. For f =1.0 �full memory� we have the well
known analytical case showing a good correlation with the simula-
tions; the persistent region just appears for p�3 /4. Overall, we can
see a good correlation between the analytical results and the nu-
merical ones.
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FIG. 6. H versus p plot. The addition of vacancies �dilution� in
the total memory of the walker did not provide significant changes
in the Hurst exponent. For a dilution of 95%�d=0.95� and several f
values, the results obtained are almost equivalent to the zero dilu-
tion. The critical case happens for d=1.0 �totally diluted memory�,
in which the walker just reminds the first step, equivalent to
f =0.0 �no dilution case�.
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We show in Fig. 8�a� the Hurst exponents for the Thue
Morse profile memory with a dilution d=0.5; the changes in
the results were not significant when compared with a ran-
dom dilution with d=0.95 �Fig. 6�. In Fig. 8�b� we see results
for H using the Fibonacci sequence that corresponds to a
dilution close to 100%. Overall we did not notice any sig-
nificant influence resulting from the tested diluted memory
profiles in the scaling behavior of the system. The reason for
this fact is argued in the next paragraph.

Finally, we analyze the persistence shown in the Fig. 9 for
two cases of dilution: without �d=0.0� and high dilution �d
=0.95� for some values of p with f =1.0 �classic case� and
f =0.1. We scaled the persistence lengths by an averaged
value. In Figs. 9�a� and 9�b�, we see the case without dilu-
tion. For f =1.0 the curves collapse with good precision,
while for f =0.1, we have deviations from the exponential
distribution for small values of p. One can see in the Figs.
9�c� and 9�d�, the cases with dilution, not differing apprecia-
bly from the results seen in the Figs. 9�a� and 9�b�, without
dilution. We may understand these similarities through the
effective step direction, which depends essentially on the
number of steps taken in the forward and backward direc-
tions at the used memory; this is so because of the uniform

random search of the points with memory. In fact, for ex-
ample, the probability to take a decision to give a step for-
ward in an instant t+1 of a single walk with the effective
memory range L��L is nf�L�� /L�; therefore, the decision
depends only of the coarse-grained probability of the con-
sidered event, not of its detailed distribution. This argument
could also explain the same system scale behavior for differ-
ent memory profiles. Further studies are needed to complete
and clarify this hypothesis.

IV. CONCLUDING REMARKS

The rich phase diagram showed in Fig. 1�a� obtained for
this solvable non-Markovian random walk model is rather
surprising. An expected lack of Gaussian behavior is un-
usual, which happens only for small f and p as seen in Figs.
9�b� and 9�d�. Even so, the breakdown of the CLT caused by
the memory loss can be found in two regions shown in Fig.
1�a�, but just one of them ���0� presents Gaussian behav-
ior. Another important finding was a totally unexpected ap-
pearance of persistence in a region with negative feedback
���0�, which only occurs for large memory losses �low
values of f� of the recent past. This provides a direct link
between system behavior and damages in the recent memory,
namely that, damages in the recent memory can lead to sys-
tem’s persistence behavior in the long time limit. Because of
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FIG. 7. This figure shows Hurst exponent H against p for sev-
eral f: �a� f =0.1, �b� f =0.4, �c� f =1.0, and several random dilu-
tions. We can compare the case without dilution �d=0.0� with
d=0.2, 0.6 and 0.8 to conclude that larger dilutions just may cause
a small increase in H when p�0.5; however, the results might be
biased by finite size effects, so the curves might be collapsed. Av-
erages were accomplished with 1000 runs and 3 276 800 total time
units each.
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FIG. 8. This figure shows the inclusion of predefined memory to
the walker, �a� satisfying the sequence of Thue-Morse that is
equivalent to a dilution of 50%. �b� The Fibonacci sequence, where
each time given by the number of the sequence corresponds to a
point of the memory accessible to be remembered. For the total
time of 3 276 800 steps, using the sequence of Fibonacci, only 33
more localized positions of memory exist in the initial instants,
what is equal to a dilution close to 100%. We can see that the
position of the memory seems not to have any relevance in the
Hurst exponent. Averages were accomplished with 1000 runs and
3 276 800 total time units each.
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recent memory loss, we have earlier termed this effect as
amnestically induced persistence. Discrete scale invariance
�DSI� appears in the region of log-periodicity. The Hurst
exponent shows a superdiffusive behavior in the region with
order parameter B�0. This result is very important in the
study of several interesting phenomena �e.g., biological and
economic phenomena�.
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APPENDIX: LAMBERT W FUNCTION

We define the multivalued LambertW function as the in-
verse of the function,

g�W� = W exp�W� . �A1�

Let us define the variable y=−ln�f�, f being the fraction that
defines the effective memory length. Starting with Eq. �6� of
the main text, �=�f�−1, for ��0, by taking the natural loga-
rithm of both sides and isolating −ln�f�, we obtain

y =
1

1 + 
�

ln� 
�



�
� . �A2�

By defining x= 
�


�
 , we get

y =
1

1 + 
�
x
ln�x� . �A3�

Observe that this function is defined only for y�yc such
that yc is an extremum �maximum�. We can obtain such a
critical point with the first derivative of y, given

yc = LambertW� 1

e
�
� .

Therefore, 1
e
�
 =yc exp�yc�. However, yc=−ln�f0�, thus,

1
e
�
 =−f0

−1 ln�f0�, or equivalently,

− � ln�1/f0� = f0/e , �A4�

what is the mentioned equation obtained by Kenkre �4�. Cu-
riously, we can write the solution f0 for the above equation as

f0 = e
�
LambertW� 1

e
�
� . �A5�
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FIG. 9. This figure shows that the distribution of persistence
lengths �normalized by the average�, typically follows an exponen-
tial distribution. In �a�, f =1.0, the data collapses in a single straight
line, showing no appreciable variation in the inclination with dif-
ferent values of p. In �b�, f =0.1, we note a significant deviation
from exponential distribution to p=0.0. In �c� and �d�, we see that
the inclusion of a dilution of 95% did not affect the distributions
significantly. Averages were accomplished with 1000 runs and
1 000 000 total time units each.
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