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Abstract
The process of transmission of infection in epidemics is analyzed by studying a pair of
random walkers, the motion of each of which in two dimensions is confined spatially
by the action of a quadratic potential centered at different locations for the two walks.
The walkers are animals such as rodents in considerations of the Hantavirus epidemic,
infected or susceptible. In this reaction–diffusion study, the reaction is the transmission
of infection, and the confining potential represents the tendency of the animals to
stay in the neighborhood of their home range centers. Calculations are based on a
recently developed formalism (Kenkre and Sugaya in Bull Math Biol 76:3016–3027,
2014) structured around analytic solutions of a Smoluchowski equation and one of
its aims is the resolution of peculiar but well-known problems of reaction–diffusion
theory in two dimensions. The resolution is essential to a realistic application to field
observations because the terrain overwhich the rodentsmove is best represented as a 2-
d landscape. In the present analysis, reaction occurs not at points but in spatial regions
of dimensions larger than 0. The analysis uncovers interesting nonintuitive phenomena
one of which is similar to that encountered in the one-dimensional analysis given in
the quoted article, and another specific to the fact that the reaction region is spatially
extended. The analysis additionally provides a realistic description of observations on
animals transmitting infection while moving on what is effectively a two-dimensional
landscape. Along with the general formalism and explicit one-dimensional analysis
given in Kenkre and Sugaya (2014), the present work forms a model calculational tool
for the analysis for the transmission of infection in dilute systems.
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1 Background andMotivation for the Investigation

Randomwalks are ubiquitous in physics (Wax 1954) and biology (Berg 1983). Within
the vast field of their investigation is the difficult and important area of confined random
walks. We present below analysis and practically usable results for random walkers
moving under a confinement potential and interactingwhen they arrivewithin the influ-
ence of one another. We develop the theory as an extension of work we have published
recently (Kenkre and Sugaya 2014) where we have provided a general formalism and
illustrated it explicitly for a specific one-dimensional case. The application in mind
here, as in Kenkre and Sugaya (2014), is to the description of transmission of epi-
demics such as the Hantavirus (Yates et al. 2002), wherein rodents moving randomly
on the terrain passing on infection on encounter.

The reason for providing the two-dimensional analysis in the present paper is
twofold. The first is that the rodents involved in the spread of the Hantavirus do
move on an effectively two-dimensional (2-d) landscape and, although the detailed
calculations in Kenkre and Sugaya (2014), hereafter referred to as KS, have unearthed
interesting results in a one-dimensional (1-d) model, it is important to study whether
the generalization to 2-d is straightforward or whether it changes significant features.
There is, however, an additional reason for this study. In the continuum, the dimen-
sionality of the region in which the reaction event occurs (in many instances trapping,
in our present case the transmission of infection via contact) may be different from
(smaller than) that in which the over-all motion of the walker(s) occurs. Thus, the
analysis presented in KS had the over-all motion occurring on the one-dimensional
line but the encounter (reaction) occurred at a point, i.e., a zero-dimensional region.
Reaction–diffusion theory in a spatial continuum of dimensions larger than 1 suffers
from peculiar blowups if the reaction occurs at points. Whereas our development in
KS was naturally built on point encounters on a line, motion in a plane such as in the
terrain over which rodents execute their random walks can result in singular behavior
for point encounters. An explicit resolution of the familiar blowups must be therefore
implemented for realistic 2-d and higher-dimensional systems.

The theory in the present paper has been constructed in two parts, one in which a
straightforward extension of KS is presented but with both the reaction event and
the diffusion occurring in higher-dimensional space, particularly 2-d as appropri-
ate to rodents on the landscape. In the second part, we will display the blow-up
problem for point encounters that fortuitously does not occur for one-dimensional
(over-all) motion but does in a plane and also show an explicit resolution of the
problem by taking the reaction (passing of infection from one walker to another)
to occur in an extended region rather than at a point. In both parts, we obtain
usable expressions for the description of transmission of infection, recover a cer-
tain interesting non-monotonicity phenomenon presented in the 1-d analysis of KS
and, additionally, find here another phenomenon worthy of note that arises from
the introduction of a new distance that characterizes the extent of the reaction
region.

An analytic theory of the transmission of infection is a challenging undertak-
ing and is needed at this time because of recent developments in observations.
Description of the transmission of infection in an epidemic derives its importance
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from human relevance as well as the theoretical difficulties of its intellectual chal-
lenge. Original contributions (Anderson and May 1991; Okubo and Levin 2001;
Hethcote 2000; Brauer and Castillo-Chávez 2001; Dickmann et al. 2000) begin-
ning with the study of Anderson and May (1991) involved concepts such as mass
action, SIR, and the basic reproductive rate. Spatial considerations were introduced
into the investigations independently by various authors (Dickmann et al. 2000;
Okubo and Levin 2001; Abramson and Kenkre 2002; Aguirre et al. 2002; Cantrell
and Cosner 2003; Kenkre 2004, 2005; McKane and Newman 2004; Kenkre 2003;
Kenkre et al. 2007; MacInnis et al. 2008). Missing from all those studies was con-
finement features that arise in animal motion from the existence of home ranges.
That these confinement considerations cannot be ignored became clear from the anal-
ysis of field observations (Giuggioli et al. 2005; Abramson et al. 2006; Giuggioli
et al. 2006; MacInnis et al. 2008). Typically, the mean square displacement of the
rodents extracted from mark-recapture experiments is found to saturate as time pro-
gresses rather than always growing linearly as unconfined randomwalkswould predict.
The saturation area represents the home ranges of the animals which, unmistakably,
perform their random walks in a tethered manner, tending to return repeatedly to
their shelters. Therefore, it became necessary to undertake a fundamental study of
the transmission of infection in terms of interacting random walks specially under
confinement.

Such a theory that takes explicit consideration of confinement has been developed
(Kenkre and Sugaya 2014) by the present authors in KS on the basis of pairwise
interactions in a dilute system of random walkers (representing infected and suscepti-
ble animals) moving in m dimensions. The model calculation is restricted to the time
evolution of a representative pair of animals, one infected and one not, and is thus espe-
cially appropriate to a dilute system of random walkers. The motion of each animal
pair is taken to obey a Smoluchowski equation in 2m-dimensional space that combines
diffusionwith confinement of each animal to its particular home range. This passage to
a space of twice the number of dimensions follows the formalism introduced by one of
the present authors for the study of Frenkel exciton annihilation in molecular crystals
(Kenkre 1980). The new feature of the present analysis (as that of KS) is the exis-
tence of home ranges, i.e., attractive centers for the walkers. An additional (reaction)
term that comes into play when the animals are in close proximity describes the pro-
cess of infection. Analytic solutions are obtained, confirmed by numerical procedures,
and shown (Kenkre and Sugaya 2014) to predict a surprising effect of confinement
(Spendier et al. 2013). The effect is that infection spread has a non-monotonic depen-
dence on the diffusion constant and/or the extent of the attachment of the animals to the
home ranges.Optimumvalues of these parameters exist for any given distance between
the attractive centers. Any change from those values, involving faster/slower diffusion
or shallower/steeper confinement, hinders the transmission of infection. A physical
explanation has been provided in KS. Reduction to the simpler case of no home ranges
has been demonstrated in full detail. Effective infection rates have been calculated, and
it has been pointed out howonemight use them in complex systems consisting of dense
populations.
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2 Analysis in Higher Dimensions when the Dimensionality of Motion
Equals that of Reaction

Let the dimensionality of the over-all motion as well as that of the transmission of
infection be the sameanddenoted bym.Wedenote the locations of the disease-carrying
mouse, whichwe refer to as infected, and the onewithout but susceptible to the disease,
whichwe refer to as susceptible, by r1 = (x11 , x

2
1 , . . . , x

m
1 ) and r2 = (x12 , x

2
2 , . . . , x

m
2 ),

respectively, where the subscripts denote whether the mouse is infected or susceptible,
and the superscripts denote the dimension. The probability density to find the walkers
at their respective positions at time t is denoted by P(r1, r2, t). Themice are considered
to be random walkers attracted to their home locations, R1 = (h11, h

2
1, . . . , h

m
1 ) and

R2 = (h12, h
2
2, . . . , h

m
2 ), where h j

i is the home coordinate in each dimension.

2.1 General Expression for the Infection Probability

The equation ofmotion for the probability density is as inKS but nowwith an extended
reaction region,

∂P(r1, r2, t)
∂t

= ∇1 · [
γ (r1 − R1) P(r1, r2, t)

] + ∇2 · [
γ (r2 − R2) P(r1, r2, t)

]

+ D
(
∇2
1 + ∇2

2

)
P(r1, r2, t)

− C
∫ ′

d r ′
1d r

′
2 δ(r1 − r ′

1)δ(r2 − r ′
2)P(r1, r2, t), (1)

where the primed integral is over the reaction region covered by r ′
1 and r ′

2. The third
term on the right-hand side describes the random motion of the random walkers with
D being the diffusion constant. Their motion due to the attraction to their homes is
described by the first two terms, where γ is the strength of the attraction. Thus, the
walkers’ motion is given by the Smoluchowski equation. Their infection-transmission
interaction is given in the fourth term. The infection rate is denoted by C and has the
unit [1/time].

We focus on the homogeneous propagator, Π(r1, r ′
1, r2, r

′
2, t), and obtain from it,

the homogeneous solution,

η(r1, r2, t) =
∫ ∫

d r ′
1d r

′
2Π(r1, r ′

1, r2, r
′
2, t)P(r ′

1, r
′
2, 0), (2)

with P(r ′
1, r

′
2, 0) being the initial condition, and the integral being over all space. This

allows us to obtain the infection probability, I(t), the probability that the susceptible
mouse is infected at time t , precisely as in KS,

I(t) = 1 −
∫ ∫

d r1d r2P(r1, r2, t), (3)
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where the integral is over all space.With this definition, I(t) is obtained in the Laplace
domain as

Ĩ(ε) = 1

ε

[
μ̃(ε)

1/C + ν̃(ε)

]
, (4)

where tilde denotes Laplace transform and ε is the Laplace variable. The func-
tions μ(t) and ν(t) are given in terms of homogeneous quantities, η(r1, r2, t) and
Π(r1, r ′

1, r2, r
′
2, t) by

μ(t) ≡
∫ ′

d r1r2η(r1, r2, t), (5)

ν(t) ≡
∫ ′ d r ′

1d r
′
2

∫ ′ r1d r2Π(r1, x′
1, r2, r

′
2, t)∫ ′ d r ′

1d r
′
2

. (6)

Here, μ(t) is the probability to find the walkers within the infection region at time t
given their initial conditions, in the absence of the infection phenomenon. Because of
the extended reaction region, ν(t) here is obtained via the ν-function method (Kenkre
1982; Kenkre and Parris 1983), where an ensemble average of the probability to find
the walkers within the region at t given that they were within the region initially, over
the infection region. All these results are straightforward generalization of those in
KS for arbitrary dimensions.

2.2 Introduction of the Relative Coordinate

A realistic scenario for an infection-transmission event is for it to occur when the mice
come within a certain distance of one another. In such a case, it is useful to make a
coordinate transformation to the center of mass (CM) and relative coordinate system.
To illustrate this explicitly, we refer the reader to Fig. 1. The one-dimensional position
phase-space in the original coordinate (labeled with x11 ≡ x1 and x12 ≡ x2) and CM-
relative coordinate (labeled with x+ and x−) is superimposed. The gray region lying

Fig. 1 A one-dimensional
realization of the system
showing the original
coordinates, x1-x2 (solid lines).
The CM-relative coordinates,
x+-x−, are superimposed on the
original axes in the dotted axes.
The infection region, shown
shaded, lies along the CM (x+)
coordinate and is perpendicular
to the relative (x−) coordinate
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diagonal to the original coordinate indicates the infection region.Notice that this region
lies parallel to the CM coordinate and perpendicular to the relative one, indicating that
the transmission of infection occurs only dependent on the relative coordinate.

Thus, let the CM and the relative coordinates be denoted by r+ and r−, respectively.
The specific transformation between r1, r2 and r+, r− is given by

r± = 1√
2

(r1 ± r2) ⇐⇒ r1,2 = 1√
2

(r+ ± r−) , (7)

where the factor of 1/
√
2 is chosen to preserve the form of the motion part of the

equation. With this transformation, the equation of motion becomes

∂P(r+, r−, t)

∂t
= ∇+ · [

γ (r+ − R+) P(r+, r−, t)
]

+ ∇− · [
γ (r− − R−) P(r+, r−, t)

] + D
(
∇2+ + ∇2−

)
P(r+, r−, t)

− C
∫ ′

dx′+dx′− δ(x+ − x′+)δ(x− − x′−)P(x+, x−, t), (8)

where R± are given by

R± = 1√
2

(R1 ± R2) . (9)

Following the same procedure as in the system of original coordinates, we find

ν(t) ≡
∫ ′ d r ′+d r ′−

∫ ′ d r+d r− Π(r+, r ′+, r ′−, r ′−t)∫ ′ d r ′+d r ′−
, (10)

and

μ(t) ≡
∫ ′

d r+d r− η(r+, r−, t). (11)

The propagator in this coordinate, Π(r+, r ′+, r−, r ′−, t), is given by

Π(r+, r ′+, r−, r ′−, t)

=
(

1√
4πDT (t)

)2m m∏

β=1

e−
(
x
β
+−h

β
+−(x

′β
+ −h

β
+)e−γ t

)2+
(
x
β
−−h

β
−−(x

′β
− −h

β
−)e−γ t

)2

4DT (t) ,

(12)

where T (t) = (1/2γ )(1 − e−2γ t ). Since the entire CM coordinate is part of the
infection region as explained above, the primed integral is appropriately written as

∫ ′
d r+d r− →

∫

all space
d r+

∫ ′
d r−. (13)
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Using this relation and performing the first integral in the numerator of the definition
of ν(t) given in Eq. (10) results in

∫

all space
d r+

∫ ′
d r− Π(r+, r ′+, r−, r ′−, t)

=
∫

all space
d r+

∫ ′
d r−

(
1√

4πDT (t)

)2m 2m∏

β=1

e−
(
x
β
+−h

β
+−(x

′β
+ −h

β
+)e−γ t

)2+
(
x
β
−−h

β
−−(x

′β
− −h

β
−)e−γ t

)2

4DT (t)

=
∫ ′

d r−
(

1√
4πDT (t)

)m m∏

β=1

e−
(
x
β
−−h

β
−−(x

′β
− −h

β
−)e−γ t

)2

4DT (t) . (14)

Since we see clearly that the CM coordinate is integrated entirely out of the problem,
we need to focus only on the relative coordinate. Let us define the integrand of Eq. (14)
as

Π(r−, r ′−, t) ≡
(

1√
4πDT (t)

)m m∏

β=1

e−
(
x
β
−−h

β
−−(x

′β
− −h

β
−)e−γ t

)2

4DT (t) . (15)

With this result, the ν-function can be written as

ν(t) =
∫
all space d r

′+
∫ ′ d r ′−

∫ ′ d r− Π(r−, r ′−, t)
∫
all space d r

′+
∫ ′ d r ′−

. (16)

The propagator does not depend on r ′+. The integrals over r ′+ in the numerator and
the denominator cancel, leading to

ν(t) =
∫ ′ d r ′−

∫ ′ d r− Π(r−, r ′−, t)
∫ ′ d r ′−

. (17)

Let us consider a delta-function initial condition of the walkers for the rest of this
paper, i.e., P(r1, r2, 0) = δ

(
r1 − r01

)
δ
(
r2 − r02

)
, which translates to P(r+, r−, 0) =

δ
(
r+ − r0+

)
δ
(
r− − r0−

)
according to Eq. (7). Therefore, μ(t) becomes

μ(t) =
∫ ′

d r− Π(r−, r0−, t). (18)

Most actual situations correspond to a two-dimensional space because the mice that
transmit the infection move about on the open terrain which can be considered flat for
all practical purposes. Therefore, we give further analysis in two dimensions.

2.3 Reaction Region as a Disk in the Plane

For the ease of notation, we let the relative coordinate in the first dimension be denoted
by x1− ≡ x , that of the second dimension by x2− ≡ y, the initial condition by x0,1− ≡ x0

and x0,2− ≡ y0, the relative home-center coordinate in the first dimension by h1− ≡ h,
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and that of the second dimension by h2− ≡ f . The propagator corresponding toEq. (15)
then becomes

Π(x, x ′, y, y′, t) =
(

1

4πDT (t)

)
e− (x−h−(x ′−h)e−γ t)

2+(y− f −(y′− f )e−γ t)
2

4DT (t) , (19)

and ν(t) and μ(t) are given by

ν(t) =
∫ ′ dx ′dy′ ∫ ′ dxdy Π(x, x ′, y, y′, t)

∫ ′ dx ′dy′ , (20)

and

μ(t) =
∫ ′

dxdyΠ(x, x0, y, y0, t). (21)

Suppose that the infection is transmitted to the susceptible mouse at a rate C when the
mice come within a distance b of one another. This means that the infection region is
described by x2 + y2 ≤ b2. Hence it is clear that the primed integral over the infection
region is expressed simpler in the corresponding polar coordinate, where it becomes
a circular disk of radius b, i.e.,

∫ ′
dxdy =

∫ b

0
dr

∫ 2π

0
rdφ. (22)

Since the polar variables, r and φ, are given by

{
r2 = x2 + y2

φ = tan−1(y/x)
⇐⇒

{
x = r cosφ

y = r sin φ .
, (23)

the relative home-center coordinates transformed as

{
H2 = h2 + f 2

ω = tan−1( f /h)
⇐⇒

{
h = H cosω

f = H sinω .
(24)

In these polar coordinates, the propagator takes the form

Π(r , r ′, φ, φ′, t) = 1

4πDT (t)
e− r2+F2(r ′,φ′,t)−2rF(r ′,φ′,t) cos(φ−Φ(r ′,φ′,t))

4DT (t) . (25)

Here, the functions F and Φ are given in terms of γ , H , and T (t) as

F2(r ′, φ′, t) = r ′2 − 2γ
[
r ′2 + H2 − 2r ′H cos(φ′ − ω)

]
T (t), (26)

Φ(r ′, φ′, t) = tan−1
(

(r ′ sin φ′ − H sinω)e−γ t + H sinω

(r ′ cosφ′ − H cosω)e−γ t + H cosω

)
. (27)
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In computing, the important quantity ν(t) is given by

ν(t) =
∫ b
0 dr ′ ∫ 2π

0 r ′dφ′ ∫ b
0 dr

∫ 2π
0 rdφ Π(r , r ′, φ, φ′, t)

∫ b
0 dr ′ ∫ 2π

0 r ′dφ′ (28)

requires the calculation of the integral over φ of Π(r , r ′φ, φ′, t). The analytic evalu-
ation of this integral is, which is nothing other than the propagator to find the walkers
somewhere within the disk, being separated by a distance r ≤ b at t , given that they
were separated by r ′ ≤ b and angle φ′ at the beginning, straightforward. Calling this
integral as Π(r , r ′, φ′, t), we see that

Π(r , r ′, φ′, t) ≡
∫ 2π

0
dφ Π(r , r ′, φ, φ′, t) (29)

= 1

4πDT (t)
e− r2+F2(r ′,φ′,t)

4DT (t)

∫ 2π

0
dφ e

2rF(r ′,φ′,t) cos(φ−Φ(r ′,φ′,t))
4DT (t) (30)

= 1

2DT (t)
e− r2+F2(r ′,φ′,t)

4DT (t) I0

(
rF(r ′, φ′, t)

2DT

)
, (31)

where I0(z) is the zeroth-order modified Bessel function of the first kind. This expres-
sion is similar to, and a generalization of, the expression obtained recently by and
Kenkre (Spendier and Kenkre 2013) for reaction–diffusion theory.1 Then, in terms of
Π(r , r ′, φ′, t), ν(t) and μ(t) are given by

ν(t) = 1

πb2

∫ b

0
dr ′

∫ 2π

0
dφ′

∫ b

0
dr rr ′Π(r , r ′, φ′, t), (32)

μ(t) =
∫ b

0
dr rΠ(r , r0, φ0, t). (33)

We now examine the short-time behavior of ν(t) by taking limit t → 0 in Eq. (32).
When t → 0, the functions T (t) and F(r ′, φ′, t) become

T (t → 0) → t (34)

F2(r ′, φ′, t → 0) → r ′2, (35)

which in turn makes Π(r , r ′, φ′, t) to become

Π(r , r ′, φ′, t → 0) → 1

2Dt
e− r2+r ′2

2Dt I0

(
rr ′

2Dt

)
. (36)

Furthermore, the argument of the Bessel function diverges and it is appropriate to
express I0(z) in terms of its asymptotic form Abramowitz and Stegun (1970), which
is

1 It has also appeared earlier in the context of heat conduction (Carslaw and Jaeger 1959).
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I0(z) ∼ 1√
2π z

ez, for large z. (37)

With this, Π(r , r ′, φ′, t → 0) becomes

Π(r , r ′, φ′, t → 0) → 1√
rr ′

1√
4πDt

e− (r−r ′)2
4Dt → 1√

rr ′ δ(r − r ′). (38)

Using this result, ν(t → 0) is

ν(t → 0) → 1

πb2

∫ b

0
dr ′

∫ 2π

0
dφ′

∫ b

0
dr rr ′

√
1

rr ′ δ(r − r ′)

= 1

πb2

∫ b

0
dr ′

∫ 2π

0
dφ′

∫ b

0
dr r ′ = 1. (39)

We thus see that ν(t) is well behaved at short times and its Laplace transform does
exist.

Further calculations to arrive at the infection probability I(t) require numerical
means: first, ν(t) and μ(t) given in Eqs. (32) and (33) are calculated by numerically
evaluating the integrals. Then they are numerically Laplace transformed, and the result
is used to obtain the infection probability in the Laplace domain, Ĩ(ε), through Eq. (4).
Finally, this Ĩ(ε) is numerically inverted to obtain I(t).

2.4 Non-monotonicity in the Dependence of the Strength of the Confinement

The infection probability, obtained numerically, shows the non-monotonic effect of
the home ranges of the walkers. On panel (a) of Fig. 2, the infection probability
against time (scaled to the diffusive time, τH = H2/2D) is given. As the magni-
tude of the confinement of the walkers to their respective homes is increased from
γ τH = 0.5 (asterisks), 1.2 (solid line), to 2.0 (circles), the infection curve behaves
non-monotonically, as observed in the one-dimensional result given in KS.

In addition to I(t), as explained in KS, the effective rate of infection, α, can be
generally defined to efficiently characterize the effect of the confining potentials on
I(t). In order to find such a quantity, if it exists, we asked: what would the rate α be
in terms of ν(t) and μ(t), if I(t) were a decaying exponential of the form2 I(t) =
1− e−αt ? In the Laplace domain, such I(t) is given by Ĩ(ε) = α/ [ε(ε + α)], which
is equated to the right-hand side of Eq. (4) to be solved for ε-dependent quantity, α̃(ε).
An Abelian theorem was applied to define the effective rate: α ≡ limε→0 [εα̃(ε)],
which results in

α = μ(∞)

1/C + 1/M , (40)

2 See Kenkre and Sugaya (2014) for a detailed discussion. Section 5 is devoted entirely to this exponential
representation. See particularly Equations (15)–(17).
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(a) (b)

Fig. 2 a The non-monotonic effect of infection probability as a function of increasing γ τH . The latter
dimensionless parameter characterizes the strength of confinement. The infection probability I(t) is plotted
against time in units of the diffusive time, τH , for thewalkers to traverse the inter-home distance H . Infection
curves are produced for the values of γ τH = 0.5, 1.2, and 2.0. b The effective rate α scaled to 1/τH plotted
against γ τH , whose peak indicates the optimal value of γ τH for infection. The rate of infection C is kept
constant at 0.05 in units of 1/τH

where M, which we call the motion parameter, is defined as

1

M =
∫ ∞

0
dt [ν(t) − μ(t)] . (41)

In panel (b) of Fig. 2, α scaled to 1/τH is plotted against γ τH . The peaking behavior
of α as a function of γ τH shows, transparently, that the degree of the confinement
of the random walkers to their respective homes affects the infection probability non-
monotonically.

This result reconfirms the generalization of the effect of confinement found in
one dimension in KS. The existence of the home ranges of the walkers makes their
probability density to become Gaussians in the steady state. As seen in the expressions
of Ĩ(ε) in Eq. (4) and α in Eq. (40), the effects of confinement enter these quantities
through the homogeneous probabilities, μ(t) and ν(t), to find the walkers within the
infection region at time t , given their initial conditions, and given that they were within
the region initially, respectively. The probability density to find the walkers together,
in the steady state, varies non-monotonically as a function of the confinement strength,
and thus gives rise to the non-monotonic effect in I(t) and α.

We now discuss a more general situation, where the dimensionality of the infection
region and that of the motion of walkers differ.
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3 Analysis in Higher DimensionsWhen the Dimensionality of Motion
Exceeds that of Reaction

Although the above analysis is based on the assumption that the dimensionality of
the walker equals that of the infection region, practical situations exist in which this
is not true. A clear example is a pair of walkers each executing a 1-d random walk
and transmitting infection on encounter at a point. This example indeed underlies the
situation in our earlier analysis (Kenkre and Sugaya 2014). A mathematical problem
arises if each of the walkers executes a 2-d random walk but the infection region is
still a point. Singularities appear in the short-time behavior of the ν-function causing
its Laplace transform impossible to be evaluated.

Generally, for a point infection-region in m-dimensions, ν(t) is given by (Kenkre
and Sugaya 2014)

ν(t) =
∫
all space d

m r ′
1

∫
all space d

m r1 Π(r1, r ′
1, r1, r

′
1, t)∫

all space d
m r ′

1
(42)

=
(

1√
8πDT (t)

)m m∏

β=1

e−
[(

h
β
1 −h

β
2

)
(1−e−γ t)

]2

8DT (t) . (43)

In the limit t → 0, this ν-function behaves as

ν(t → 0) → t−m/2 (44)

to the lowest order of t . As a consequence, the Laplace transform of ν(t) exists only
when m = 1, and does not exist for m > 1. What this means is that while 1-d walkers
transmitting infection on meeting at a point do not raise any problems for the theory
as developed in KS, an extension of the theory to 2-d walkers doing the same presents
a singularity problem.

We show how this problem can be solved by expanding the dimensionality of the
infection region and give an example in two dimensions.

3.1 Resolution of Point Encounter Problems by Expansion of the Reaction Region

Consider a situation where infection transmission occurs when the walkers are within
a certain region of dimensionality θ that is smaller than that of the motion: θ < 2m.
For such a case, we write, for the equation of motion for P(r1, r2, t),

∂P(r1, r2, t)
∂t

=∇1 · [
γ (r1 − R1) P(r1, r2, t)

] + ∇2 · [
γ (r2 − R2) P(r1, r2, t)

]

+ D
(
∇2
1 + ∇2

2

)
P(r1, r2, t)

− C(2m−θ)

∫ ′
dθ1 r ′

1d
θ2 r ′

2 δm(r1 − r ′
1)δ

m(r2 − r ′
2)P(r1, r2, t).

(45)
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The first three terms on the right-hand side describe the motion of the random walkers
precisely as in Eq. (45). The departure from Eq. (45) is seen in the fourth term, in
the dimensionality of the differential elements, dθ1 r1 and dθ2 r2, and the infection rate
C(2m−θ). The dimensionalities of the infection region for infected and susceptible mice
are given by θ1 and θ2, respectively, where θ = θ1 + θ2. The infection rate is denoted
by C(2m−θ) to reflect its dimensionality:

[
length(2m−θ)/time

]
.

We follow the previous arguments to arrive at the expression of the infection prob-
ability in the Laplace Domain. In terms of the propagator, Π(r1, r ′

1, r2, r
′
2, t), the

solution in the Laplace space is given by

P̃(r1, r2, ε) = η̃(r1, r2, ε) − C(2m−θ)

∫ ′
dθ1 r ′

1d
θ2 r ′

2 P̃(r ′
1, r

′
2, ε)Π̃(r1, x′

1, r2, r
′
2, ε),

(46)
where η(r1, r2, t) is the homogeneous solution given in Eq. (2). The definition of the
infection probability [Eq. (3)] yields

Ĩ(ε) = C(2m−θ)

ε

∫ ′
dθ1 r ′

1d
θ2 r ′

2 P̃(r ′
1, r

′
2, ε). (47)

Applying the defect technique (Montroll and West 1979) to Eq. (46), we integrate in
the variables r1 and r2 over the infection region, i.e.,

∫ ′
dθ1 r1dθ2 r2 P̃(r1, r2, ε) =

∫ ′
dθ1 r1dθ2 r2η̃(r1, r2, ε)

− C(2m−θ)

∫ ′
dθ1 r ′

1d
θ2 r ′

2 P̃(r ′
1, r

′
2, ε)

∫ ′
dθ1 r1dθ2 r2Π̃(r1, r ′

1, r2, r
′
2ε). (48)

We define ν2m−θ (t)3 by the use of the ν-function method (Kenkre 1982; Kenkre and
Parris 1983):

ν(2m−θ)(t) ≡
∫ ′ dθ1 r ′

1d
θ2 r ′

2

∫ ′ dθ1 r1dθ2 r2Π(r1, r ′
1, r2, r

′
2, t)∫ ′ dθ1 r ′

1d
θ2 r ′

2

, (49)

and also define μ(2m−θ)(t) as

μ(2m−θ)(t) ≡
∫ ′

dθ1 r1dθ2 r2η(r1, r2, t). (50)

Replacing the integral over the propagator in Eq. (48) with ν̃(2m−θ)(ε) yields

∫ ′
dθ1 r1dθ2 r2 P̃(r1, r2, ε) = μ̃(2m−θ)(ε)

1 + C(2m−θ )̃ν(2m−θ)(ε)
, (51)

3 Note that when (2m − θ) = 0 the ν-function is denoted simply by ν(t) (the original definition Kenkre
1982; Kenkre and Parris 1983). In a couple of recent publications (Spendier and Kenkre 2013; Kenkre and
Sugaya 2014), the symbol ν(t) has been applied to a function with varying dimensions according to the
dimension of the motion and the trap.
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which is an approximate result. Consequently, substituting this result into Eq. (47)
gives

Ĩ(ε) = 1

ε

[
μ̃(2m−θ)(ε)

1/C(2m−θ) + ν̃(2m−θ)(ε)

]
. (52)

This is the generalized form of the infection probability (in the Laplace domain) given
in Eq. (4), to cases with differing dimensionality between the infection region and
motion of the walkers. The effective rate of infection is given by

α = μ(2m−θ)(∞)

1/C(2m−θ) + 1/M(2m−θ)

, (53)

with
1

M(2m−θ)

=
∫ ∞

0
dt

[
ν(2m−θ)(t) − μ(2m−θ)(t)

]
. (54)

We proceed to derive ν(2m−θ) and μ(2m−θ) in CM-relative coordinates. This leads
to

ν(2m−θ)(t) ≡
∫ ′ dθ+ r ′+dθ− r ′−

∫ ′ dθ+ r+dθ− r−Π(r+, r ′+, r ′−, r ′−t)∫ ′ dθ+ r ′+dθ− r ′−
, (55)

and

μ(2m−θ)(t) ≡
∫ ′

dθ+ r+dθ− r−η(r+, r−, t). (56)

It was shown in the last section that the geometry of the infection region does not
depend on the CM coordinate when we consider infection transmission to take place
as a function of the relative distance of walkers. This means that θ+ = m, while θ−
remains to be determined for a specific scenario at hand. Thus, the primed integral is
written as ∫ ′

dθ+ r+dθ− r− →
∫

all space
dm r+

∫ ′
dθ− r−, (57)

and 2m− θ = 2m− θ+ − θ− = m− θ−. Performing the first integral in the numerator
of the definition of ν(2m−θ)(t) given in Eq. (55) results in

∫

all space
dm r+

∫ ′
dθ− r−Π(r+, r ′+, r−, r ′−, t) =

∫ ′
dθ− r− Π(r−, r ′−, t), (58)

whereΠ(r−, r ′−, t) is given in Eq. (15). With this result, the ν-function can be written
as

ν(2m−θ)(t) = ν(m−θ−)(t) =
∫ ′ dθ− r ′−

∫ ′ dθ− r−Π(r−, r ′−, t)
∫ ′ dθ− r ′−

. (59)

For a δ-function initial condition, μ(2m−θ)(t) becomes

μ(2m−θ)(t) = μ(m−θ−)(t) =
∫ ′

dθ− r−Π(r−, r0−, t). (60)
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3.2 Specific Example of a Reaction Region as a Ring

We present here the simplest example in two dimensions, where the transmission of
infection is assumed to occur when the mice are at a certain distance from each other.
We call this distance the infection range. In polar coordinates, such geometry of the
infection region becomes a ring of a given radius b, with b2 = (

x1−
)2 + (

x2−
)2
. The

dimensionality of the ring infection-region in the relative coordinate is 1. Thus, the
subscript (2m − θ) becomes (2m − θ) = m − θ− = 2 − 1 = 1.

Note that, for a ring infection-region of radius b, the primed integral is explicitly
written as

∫ ′
d1r− →

∫ ∞

0
dr

∫ 2π

0
rdφ

1

r2π
δ (r − b) =

∫ ∞

0
dr

∫ 2π

0
dφ

1

2π
δ (r − b) ,

(61)
in the polar coordinates. We calculate ν1(t) and μ1(t) from the definitions given in
Eqs. (59) and (60).

ν1(t) =
∫ ∞
0 dr ′ ∫ 2π

0 dφ′ 1
2π δ

(
r ′ − b

) ∫ ∞
0 dr

∫ 2π
0 dφ 1

2π δ (r − b) Π(r , r ′, φ, φ′, t)
∫ ∞
0 dr ′ ∫ 2π

0 dφ′ 1
2π δ (r ′ − b)

= 1

2π

∫ 2π

0
dφ′ Π(b, b, φ′, t), (62)

and

μ1(t) =
∫ ∞

0
dr

∫ 2π

0
dφ

1

2π
δ (r − b) Π(r , r0, φ, φ0, t) = 1

2π
Π(b, r0, φ0, t).

(63)
HereΠ(r , r ′, φ, φ′, t) andΠ(r , r ′, φ′, t) are given in Eqs. (25) and (29), respectively.

The ring infection-region in two dimension is analogous to a point infection-region
in one dimension in the following way. The analysis provided at the beginning of this
section shows that the ν-function for the point infection in one dimension behaves
as t−1/2 for small times. It is straightforward to demonstrate ν1(t) given in Eq. (62)
exhibits the same time dependence for small times. As t → 0, the argument of the
Bessel function becomes large where its asymptotic form is appropriate, as given in
Eq. (37), and ν1(t) behaves as, at short times,

ν(t → 0) → 1

2π

∫ 2π

0
dθ ′

(
1

4πDt

)
e− b2

2Dt

√
2Dt

b2
e

b2
2Dt ∼ t−1/2. (64)

3.2.1 Recovery of Non-monotonicity and Appearance of a Resonance Effect

To obtain the infection probability, the integral over φ′ of ν1(t) given in Eq. (62)
is done numerically. Then this result and μ1(t) of Eq. (33) are numerically Laplace
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(a) (b)

Fig. 3 a The non-monotonic variation in the infection probability I(t) as a function of increasing strength
of confinement, γ . Here γ is scaled to 1/τH , the diffusive time for the walker to traverse the inter-home
distance H . The infection probability I(t) is plotted against time in units of τH . Each infection curve
corresponds to a different value of γ τH . b The effective rate α in units of 1/τH is plotted against γ τH . The
peak indicates the optimal value of γ τH for transmission of infection. The rate of infection C1 is illustrative
and kept constant at 9 in units of 2D/H

transformed and substituted into Eq. (52) to obtain Ĩ(ε). Finally, Ĩ(ε) is numerically
Laplace inverted to obtain the result, I(t), in the time domain.

The resulting infection curve and the effective rate showing the non-monotonic
behavior due to the effect of confinement are shown in Fig. 3. In panel (a), the infection
curve is plotted against time. The latter is scaled to the diffusive time τH = H2/2D.
Each curve corresponds to a value of the unitless parameter γ τH , effectively to a
given potential strength γ . Panel (b) of Fig. 3 shows the effective rate α scaled to
1/τH , plotted against γ τH again showing the non-monotonic effect. Intuitively, one
can think of this effect arising from the changing probability of the walkers finding
one another given their inter-home distance H and the degree of their confinement to
respective homes, in the contact-limited case. The steady-state Smoluchowski width
σ essentially gives the degree of confinement. When these lengths are balanced, i.e.,
H = σ , the probability for the walkers to find each other is maximized, which in turn
is reflected in the maximized infection probability.

The infection range, b, is a new length scale in addition to H and σ . It arises from
the extension of the infection influence to a finite region and enters the dynamics in a
manner to effectively modulate the role of H per given σ . In other words, when the
walkers live at homes that are separated by H and if the infection happens at range b,
then part of the problem becomes equivalent to a co-location infection with |H −b| as
the home separation distance. For this reason, when H = b, i.e., when the inter-home
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Fig. 4 Optimal value of the confining potential steepness γ (scaled to 1/τH ) for maximum infection rate as
a function of (b/H ). The divergence of γ τH at b/H = 1 signals the resonant phenomenon. Values given
here are accurate for a large value of the infection rate

distance and infection range are the same, infection occurs as if the walkers share
a home. In such a situation, increasing the strength of confinement only helps the
infection transmission. We refer to this phenomenon as “resonant” behavior.

We show this effect in Fig. 4 for the simplest case where an infection range is
introduced in one dimension. The optimal value of γ (scaled to 1/τH ) for infection
transmission is plotted as a function of the ratio between the infection range and inter-
home distance, b/H . The resonant behavior is indicated by the diverging value of γ τH
at b/H = 1. We provide a detailed analysis to determine the optimal value of γ τH in
“Appendix”.

4 Discussion

The mathematical analysis of transmission of infection in an epidemic such as the
Hantavirus, which propagates by contact of animals moving over a landscape, was
begun in KS (Kenkre and Sugaya, 2014) and is completed in the present paper. The
essential theory is in KS where many fundamental insights into infection spread were
obtained through a simplified one-dimensional study. However, the present extension
to two (and higher) dimensions also plays a non-trivial, indeed essential, role in an
understanding and description of the phenomenon of infection spread. This is so not
only because the realistic situation in cases such as that of the Hantavirus is best
described in two dimensions (the landscape over which the rodents move) but also
because reaction diffusion in dimensions higher than 1 inevitably presents singularities
in description. We have described these singularities in Sect. 3 of the present paper,
particularly in Eq. (44), where the crucial quantity ν(t), central to the KS formalism,
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is shown to vary with time t as t−m/2. The dimensionality being m here, the Laplace
transforms of ν on which the KS theory is built exist for m = 1 but not for m > 1,
i.e., for 2 and higher dimensions.

The present study resolves this problem by expanding the dimensionality of the
infection region, thereby avoiding point encounters which are the source of the
singularities. The detailed theory is shown in Sects. 3.1 and 3.2 with results dis-
played graphically in Figs. 3 and 4. Of these, the former reconfirms the curious
non-monotonicity effect introduced inKS, now for higher dimensions aswell, whereas
the latter shows our findings on an additional phenomenon we call the resonant effect.
The present analysis thus generalizes the KS theory and adds to it new predictions.4

The present paper has two different types of infection spread description: one in
which the singularity problems stemming from point encounters are eliminated by
expanding the dimensionality of the infection region as explained above; but also
another in which the dimensionality of the infection region and that of the motion of
walkers is the same. Singularity problems do not arise in this case as point regions are
avoided entirely. The analysis which is more straightforward is given in Sect. 2 of this
paper, and results in the infection plots are displayed in Fig. 2. The plots show a simple
generalization of the KS theory in higher dimensions. Thus, the analysis in the present
paper along with the KS formalism completes, in the sense of model calculations, the
theory of infection spread of epidemics such as the Hantavirus for the case of dilute
concentration of rodents.

Appendix: Analysis inOneDimension: Introduction of InfectionRange

We consider that the infection is transmitted at a range b, while the mice move in
one dimension, and start the analysis in CM-relative coordinates. The equation of
motion for P(x+, x−, t), the probability density to find the walkers at CM and relative
coordinates x+ and x−, respectively, at time t is

∂P(x+, x−, t)

∂t
= ∂

∂x+
γ (x+ − h+) P(x+, x−, t) + ∂

∂x−
γ (x− − h−) P(x+, x−, t)

+ D

(
∂2

∂x2+
+ ∂2

∂x2−

)

P(x+, x−, t)

− C1δ (x− − b) P(x+, x−, t) − C1δ (x− + b) P(x+, x−, t).
(A.1)

The first three terms represent the Smoluchowski motion. The infection transmission
is described in the last two terms; the arguments of the δ-functions indicate that the
infection is transmitted to the susceptible mouse from the infected one when they are
at distance b apart, i.e., when x− = ±b. The infection rate is given by C1.

4 Wemention here in passing that if themotion of the rodents (in the absence of the transmission of infection)
is not Gaussian as concluded in Hantavirus observations in Refs. Giuggioli et al. (2005), Abramson et al.
(2006), and MacInnis et al. (2008) but rather anomalous in nature, the time dependence of infection curve
I(t), can be quite complex making it definition of the effective rate α impossible.
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The symmetry and simplicity of this infection region allows for an exact calculation
of ν̃(ε), without the approximation of the ν-function method. The propagator for this
problem is given by

Π(x+, x ′+, x−, x ′−, t) = 1

4πDT (t)
e− (x+−h+−(x ′+−h+)e−γ t)

2+(x−−h−−(x ′−−h−)e−γ t)
2

4DT (t) .

(A.2)
In terms of this propagator, the solution to Eq. (A.1) in the Laplace domain as

P̃(x+, x−, ε) = η̃(x+, x−, ε)

− C1
∫ ∞

−∞
dx ′+Π̃(x+, x ′+, x−,−b, ε)P̃(x ′+,−b, ε)

− C1
∫ ∞

−∞
dx ′+Π̃(x+, x ′+, x−, b, ε)P̃(x ′+, b, ε). (A.3)

From its definition given in Eq. (3), the infection probability in the Laplace domain is
given in Eq. (A.3) by

Ĩ(ε) = C1
ε

[∫ ∞

−∞
dx+ P̃(x+, b, ε) +

∫ ∞

−∞
dx+ P̃(x+,−b, ε)

]
. (A.4)

The use of the defect technique, i.e., setting x− = ±b and integrating x+ over all
space, after some algebra, yields

∫ ∞

−∞
dx+ P̃(x+, b, ε) +

∫ ∞

−∞
dx+ P̃(x+,−b, ε)

= 1

C1

[
1/C1 + ν̃++

1 (ε) − ν̃+−
1 (ε)

]
μ̃−
1 (ε) + [

1/C1 + ν̃−−
1 (ε) − ν̃−+

1 (ε)
]
μ̃+
1 (ε)

[
1/C1 + ν̃−−

1 (ε)
] [
1/C1 + ν̃++

1 (ε)
] − ν̃−+

1 (ε)ν̃+−
1 (ε)

,

(A.5)

where

μ+
1 (t) =

∫ ∞

−∞
dx+η(x+, b, t) = 1√

4πDT (t)
e− (b−H−(x0−−H)e−γ t)

2

4DT (t) (A.6)

μ−
1 (t) =

∫ ∞

−∞
dx+η(x+,−b, t) = 1√

4πDT (t)
e− (b+H+(x0−−H)e−γ t)

2

4DT (t) (A.7)

ν++
1 (t) =

∫ ∞

−∞
dx+Π(x+, b, x ′+, b) = 1√

4πDT (t)
e− [(b−H)(1−e−γ t )]2

4DT (t) (A.8)

ν+−
1 (t) =

∫ ∞

−∞
dx+Π(x+, b, x ′+,−b) = 1√

4πDT (t)
e− [b−H+(b+H)e−γ t ]2

4DT (t) (A.9)

ν−+
1 (t) =

∫ ∞

−∞
dx+Π(x+,−b, x ′+, b) = 1√

4πDT (t)
e− [b+H+(b−H)e−γ t ]2

4DT (t) (A.10)
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ν−−
1 (t) =

∫ ∞

−∞
dx+Π(x+,−b, x ′+,−b) = 1√

4πDT (t)
e− [(b+H)(1−e−γ t )]2

4DT (t) . (A.11)

In the calculation of the μ1(t)’s, a δ-function initial condition was assumed. The
infection probability in the Laplace domain is then given exactly by

Ĩ(ε) = 1

ε

[
1/C1 + ν̃++

1 (ε) − ν̃+−
1 (ε)

]
μ̃−
1 (ε) + [

1/C1 + ν̃−−
1 (ε) − ν̃−+

1 (ε)
]
μ̃+
1 (ε)

[
1/C1 + ν̃−−

1 (ε)
] [
1/C1 + ν̃++

1 (ε)
] − ν̃−+

1 (ε)ν̃+−
1 (ε)

.

(A.12)
The non-monotonic effect is explained in detail in Ref. (Kenkre and Sugaya 2014) in
the steady state and in the contact limit where 1/C1 is much greater than any of the
ν1(t)’s and μ1(t)’s in its effect. In these limit, I(t) approximately becomes

I(t) ∼ C1
(
μ+
1 (∞) + μ−

1 (∞)
) · t, (A.13)

where we note that ν++
1 (∞) = ν+−

1 (∞) = μ+
1 (∞) and ν−−

1 (∞) = ν−+
1 (∞) =

μ−
1 (∞). The condition for the optimal value of γ τH value found from this result

yields the transcendental relation,

1 − 2γ τH (1 − b/H)2

1 − 2γ τH (1 + b/H)2
= −e−4γ τH (b/H). (A.14)

The value of γ τH for given value of b/H found from this equation is plotted in Fig. 4.
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