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Reaction-diffusion theory in the presence of an attractive harmonic potential
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Problems involving the capture of a moving entity by a trap occur in a variety of physical situations, the
moving entity being an electron, an excitation, an atom, a molecule, a biological object such as a receptor cluster,
a cell, or even an animal such as a mouse carrying an epidemic. Theoretical considerations have almost always
assumed that the particle motion is translationally invariant. We study here the case when that assumption is
relaxed, in that the particle is additionally subjected to a harmonic potential. This tethering to a center modifies
the reaction-diffusion phenomenon. Using a Smoluchowski equation to describe the system, we carry out a study
which is explicit in one dimension but can be easily extended for arbitrary dimensions. Interesting features emerge
depending on the relative location of the trap, the attractive center, and the initial placement of the diffusing

particle.

DOI: 10.1103/PhysRevE.88.062142

I. INTRODUCTION AND THE
SMOLUCHOWSKI EQUATION

Reaction-diffusion problems of diffusing entities are of
great interest in a broad range of physical systems in physics,
chemistry, and biology, and have been typically studied under
the assumption that, in the absence of the the reaction
phenomenon, the motion is translationally invariant [1-9].
Our interest in the present paper is to extend these studies
fundamentally by going beyond that assumption. We analyze
systems in which a particle diffuses in a harmonic potential and
undergoes capture at a given rate when it arrives at a fixed trap.
The diffusion means that the particle performs a random walk.
The attraction to the potential center means that a tendency to
be tethered to a fixed point is present in addition. The location
of the trap is generally arbitrary, e.g., not necessarily at the
attractive center; this feature introduces interesting variety in
the consequences of the reaction-diffusion phenomenon.

Systems characterized by the above features occur often
in nature. Molecular forces confine moving entities in various
physical and chemical situations in sensitized luminescence
and photosynthesis. Funneling phenomena attract excitations
in photosynthetic antennae and molecular crystals and aggre-
gates. Particle diffusion in a harmonic field occurs also in
biophysical studies on DNA stretching with optical tweezers
[10,11]. Yet another relevant area is electrostatic steering
in enzyme ligand binding [12,13]. To bind at an enzyme’s
active site, a ligand must diffuse or be transported to the
enzyme surface, and if the binding site is buried, the ligand
must diffuse through the protein to reach it. Enhancement
of this diffusion can be achieved by attractive electrostatic
interactions between the substrate and the protein binding
site. On a more macroscopic scale, animals feel a driving
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force pointing towards their nest [14] with the consequent
emergence of home ranges [15]. Transmission of infection
in terrains where infected animals (such as rodents) interact
with susceptible ones under the action of space confinement
provides a related and more complex area of study.

Depending on the relative position of the attractive center
and the trap, a particle placed initially at some location may
be affected either favorably or unfavorably during different
stages of its motion as far as the efficiency of the trapping
phenomenon is concerned. In a translationally invariant system
all that is relevant is the initial distance between the particle and
reactive site, the manner of motion that occurs in between, and
the rate at which the reaction occurs. The problem is rendered
considerably richer in the presence of an attractive potential as
we shall see below.

Our study of the literature has uncovered no major previous
advances in reaction-diffusion theory in the presence of a
potential. Of the two relevant articles we have found, Refs. [16]
and [17], the former has no position dependence in the capture
which is trivially represented via a constant term, the emphasis
being on anomalous diffusion, and in the latter, only perfect
absorption is treated and that only for a centrally located trap,
which as we shall show below, results in a relatively featureless
case. Thus, a general understanding of the situation is not
available in the literature. This has motivated us to undertake
the present investigation.

The outline of the paper is as follows. In the rest of this
section we specify the Smoluchowski equation as the basic
equation of motion that we start with, in the absence of
capture. In Sec. II, we show how the survival probability
depends on the propagators of the equation of motion in
general, and give explicit expressions for the propagators of the
Smoluchowski equation. The combination of these two results
is the point of departure of our analysis in the subsequent
sections in the paper. Section III treats the simple case of a
centrally placed trap for which we obtain an analytic solution
in the Laplace domain, involving the Whittaker function.
Analytic inversion is possible for perfect absorption but finite
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capture rates necessitate numerical inversion of the Laplace
transform expression. Some exact results are presented for
delocalized initial distributions of the particle in the case of
perfect absorption. To study arbitrary capture rate we employ
a numerical inversion of the Laplace transform and verify the
calculations through a direct numerical procedure from the
partial differential equation consisting of the Smoluchowski
equation augmented by the localized capture term. The direct
numerical procedure is explained in the Appendix. The advan-
tage of the work reported in Sec. III is the explicit analytic
(Whittaker function) expression we provide as well as various
analytically obtained time dependencies; its disadvantage is
that it leads to generally predictable observations with little
surprise.

By contrast, Sec. IV uncovers interesting phenomena that
depend on the relative location of the trap and the attractive
center. There, on the basis of a numerical study, we provide an
analysis for several different locations of the trap and particle
and discover an effect which is perhaps nonintuitive. In Sec. V
we present two additional approaches to the problem. One is
through consideration of a transfer rate we specially define
for the purpose at hand, following developments in exciton
dynamics theory [4]. The other, which presupposes as an
approximation that the parameters of the system are such
that the equilibrium Smoluchowski distribution is attained
quickly, describes the capture efficiency as dependent on that
equilibrium distribution. Several new insights into the physics
of reaction-diffusion phenomena in the presence of a potential
become clear in Secs. IV and V. In Sec. VI we present
concluding remarks.

Our point of departure in the absence of the capture
term is a generalization of the diffusion equation, viz., the
Smoluchowski equation, which has the form

dP(x,t) 0 dP(x,t)
= —(ny(x,t) + D x )

ot 0x M

where P(x,t) is the probability to find the particle at position
x and time ¢. The diffusion constant is D; the rate at which the
particle tends to return to the potential center (taken to be the
origin without loss of generality) is y.

The propagator of this equation, i.e., the solution for
P(x,0) = §(x — xp), to be denoted by the symbol IT(x,xo,?),
can be obtained by Fourier transforming the equation and
solving the resulting first order partial differential equation
by the method of characteristics. See, e.g., [18,19]:

e Lr—x0e77)?/ADT (1))
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(%:70:2) A7 DT (1) @)
where 7 is a function of time given by
1—e 2
Tt)= ———. 3)
2y

The solution shows transparently that, wherever it is initially
placed, the particle tends to move to the origin at rate y but,
as a result of the diffusion that it also undergoes, ends up, in
the steady state, occupying a Gaussian of width proportional
to the square root of the ratio of the diffusion constant to y.
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II. SURVIVAL PROBABILITY

We are generally interested in the particle survival
probability

+00
Q(t)=/ dx P(x,1) “)

oo

when a term involving the capture parameter C; is appended to
the Smoluchowski equation to represent capture of the particle
at the point x = x,:

PG _ 0 (b p PO
= —|yxP(x,
o1 ax \V ox

—C18(x — x,)P(x,1). 5
The use of the standard defect technique [4,6,20-23]

yields the probability density in the Laplace domain (tildes
denote the Laplace transform and € is the Laplace variable),

~+00
Plx,e) = / dxoTi(r x0,€) P(50,0) — M(x, T (x,x,.6)

+00
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where
~ 1
M(x,,€) = @)

(1/C1) + T(x, ,x,,€)

Integrating this expression over all space, one obtains the
Laplace-domain result for the survival probability for arbitrary
initial conditions:

- 1 [+ dxo T (x,,x0,€) P(x0,0)
=—|1— x© = .
Q) € [ < (1/Cy) + I(xy, x,,€) )] ®

The derivation of Eq. (8) from Eq. (5) has appeared multiple
times in the literature under multiple authorship. Some of
its essential steps may be found collected in a recent article
by two of the present authors [9]. Note that the numerator
within parentheses, fj;o dxg ﬁ(x,,xo,e)P(xo,O), is the ho-
mogeneous solution (solution in the absence of capture) at the
trap site x, with the given initial particle placement P(x,0),
and that, if the absorption by the trap is perfect (infinite capture
rate), the term 1/C; is identically zero.

If the initial condition of the particle placement is localized
at a single point xg, Eq. (8) reduces to

~ . l _ ﬁ(xrv-x())
Q@)= € [1 <(1/Cl) + ﬁ(xr,xr)ﬂ’ ©

where (and henceforth) we drop the specification of € explicitly
in the arguments in the right-hand side. The starting point for
the calculations we present below is the conjunction of Eq. (9)
with Eq. (2).

III. CENTRALLY PLACED TRAP: ANALYTIC SOLUTION

The complexity of the Smoluchowski propagator Eq. (2)
makes it difficult or impossible to obtain analytic expressions
in most cases. If, however, the trap is located at the attractive
center of the potential, x, = 0, progress can be made because
the Laplace transforms of the propagators appearing in Q(¢)
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can be computed explicitly in terms of the Whittaker function.
The survival probability for this case is, in the Laplace domain,

é(e) — 1|:1 _ <M):| (10)
e (1/C) + 110,00/ ]

Putting x, =0 in the general expression for the Laplace
transform of the Smoluchowski propagator Eq. (2),

S e~ LG —x0e™7)?/4DT (1]
/ dt |: :| e,
0 Jar DT (1)
one finds, from a table of Laplace transforms [24] or otherwise,
that

/4
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Here, 7 = xé /2D is the time [25] the particle would take
to move via pure diffusion from its initial location to the
attractive center; the dimensionless quantity y t; is therefore
the ratio of that diffusion time to 1/y, the time characteristic
of motion resulting purely from the pull of the potential. On
defining 0 = /2D /y, which is the width of the equilibrium
distribution of the trap-less Smoluchowski equation [26], we
see that y 7; can be given another physical interpretation: It is
identical to the square of the initial location of the particle to
the Smoluchowski equilibrium width:

X0 2
YT = (—) . (12)
o

The W in Eq. (11) is the Whittaker W function defined in
Ref. [27] as

W n(2) = e_Z/zz(l/z)’L“U(% +u—K, 14+ 2u,z), largz| < 7
in terms of the confluent hypergeometric function
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The transform of the other propagator in Eq. (10) is even

easier to calculate. One puts xo = 0 in the above expression,
or directly computes the integral

1 o0 e—el
dt —,
Uﬁ/(; V1 —e 2t
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where I'(n) is the gamma function and B(z,w)=
I'(z)['(w)/ '(z 4+ w) is the beta function.

Substitution of Eqs. (11) and (13) into the prescription given
in Eq. (10) provides an exact expression for the total survival
probability in the Laplace domain:

~ 1
(©=—|1-
ot e|: £+ B(L.1)

(14)
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The denominator of the second term within the square brackets
is a sum of a dimensionless motion quantity that appears in
the form of the beta function, and a dimensionless capture
parameter

o)) oo

which is inversely proportional to C;. The dimensionless ratio
within parentheses in Eq. (15) compares a time for capture to
a time for motion and represents the extent of imperfectness of
absorption. If £ vanishes, that imperfection vanishes and one
has a perfect absorber; if £ is large, one has weak capture.
Equation (14) is one of the primary results of our paper.
While generally the Laplace inversion of its right-hand side
cannot be done analytically, and necessitates numerical proce-
dures, for perfect absorption a surprising reduction occurs.

A. Analytic inversion for perfect absorption

For perfect absorption, C; — oo making & = 0 vanish,
Eq. (14) reduces to

- 1 r(E2)r(£
Q(E) — ( 2y )1 4(2]/)6_,'_),
€ 27T (yr)AT(52)

eVIPW_y 414y 1),

(16)

and inversion back to the time domain is readily possible:
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Here we use well-known scaling and shift rules along with the
result [24] that the Laplace transform of

—a/2(] _ o1y Reih a
e (1 —e")Hec ])WM’U<6’—1>

is
Fe+1/24+v)I'(e+1/2—v)
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We see that the survival probability in the time domain
Eq. (17) also involves the Whittaker function with an argument
that is itself a function of time. Furthermore, W(z), in the
form it appears in Eq. (17), can be defined in terms of the
complementary error function [27],

W_i/a1/a(2) = 2!/ et Perfe(/2). (18)

This has the remarkable consequence that, for perfect absorp-
tion, we can derive the simple result

xo/0 _ YT
T 1) =erty Faom—1 19

There is much that can be said about Eq. (19). The error
function behavior ensures that the survival probability does
not change much initially but only after a threshold time has
elapsed. All time derivatives of Q(¢) of finite order vanish
at the origin. The threshold time might be taken to signify that
the particle has arrived at the trap. After that, the time scale for
the evolution of Q(¢) is generally 1/y but, in the limit that this

W_cv(a).

o) = erf(
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FIG. 1. Survival probability for perfect capture at the trap located
at center. The curves converge to the diffusive limit, Eq. (20), (topmost
curve) as y — 0. Q(¢) is shown for several y t; values: 5, 1, 0.1, 0.01,
and 0.001.

time becomes infinite (infinitely flat potential, y — 0), the
characteristic time becomes t;. One sees here transparently
the transition from potential-induced motion to the trap to
diffusive motion. In that diffusive limit (no potential), Eq. (19)
reduces to the well-known result [5,9,28-31]

o) = erf(\/g). (20)

Figure 1 shows the time dependence of the survival probability
for perfect absorption (infinite C;) for five values (5, 1, 0.1,
0.01, and 0.001) of y 7;. The curves converge to a limit (curves
for the lowest two values of y 1 practically coincide) that
represents pure diffusive motion with no potential pull.

B. Delocalized initial particle distribution: Superposition

Once the exact solution is known for a point initial condition
P(xg) = 8(x — xo) for particle placement, one can solve the
problem for any initial condition by summing the results. Thus,
provided one has the perfect absorption case, the principle of

superposition yields
*o/0 ) 1)

Jor—1
The survival probability in Eq. (21) for this central-trap
perfect-absorber system may be viewed as a transform of
the initial probability distribution P(x¢) of the particle. In a
number of useful situations the initial particle distribution is
nonvanishing only on one side of the potential center. Then
the lower limit in the integration of Eq. (21) becomes 0 and
a situation akin to the Laplace transform occurs. The error
function takes the place of the exponential in the Laplace
transform, and the quantity (o+/e2¥? — 1)~! plays the role of
the transform variable €.

We display two useful consequences of this transform. For
an initial exponential distribution P (xg) = (1/d) exp(—xo/d)
only on one side, i.e., for xo > 0 [and vanishing P (x)

o) = fm dxoP(xO)erf(

(o]
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elsewhere], with characteristic distance d, the survival proba-
bility is

0(t) = ¢ Verfe[z (1)), (22)

where ¢ (1) = (o/2d)+/€?r" — 1. For an initial Rayleigh dis-
tribution P(xg) = (xo/d2)exp[—x§/(2d2)] for xop > 0 [and
vanishing P (xo) elsewhere], we get

O(t) = [1 + (67/2d*) (™" — D]/, (23)

The first of the distributions, often called the random or
Poisson distribution, arises often and can describe, for instance,
the initial placement of coalescing signaling receptor clusters
in immune mast cells [32]. The second distribution is a biased
Poisson distribution which also occurs in several physical
systems. We have mentioned both of them because the
first concentrates the initial placement of the particle near
the attractive center while the second shifts it away by a
finite amount. We have used d to denote the average value
| xoP(x0)dx in both cases.

Figure 2 shows the two cases of the survival probability
for the two initial particle distributions. In both of them we
see that the Q(¢) curves converge to the pure diffusive limit
(top line). The characteristic time t; in the units of which ¢
is plotted in these curves equals d? /2D, i.e., is the time the
particle would take to traverse diffusively the characteristic
distance d for each of the distributions.

A noteworthy feature of Egs. (22) and (23), and of
Fig. 2, is the loss of the reverse Arrhenius behavior near
the origin (derivatives of all finite orders vanishing at the
origin) brought about by superposition of contributions from
multiple initial locations of the particles: Q(¢) curves, while
totally flat as t — 0 in Fig. 1, change through superposition to
nondrastic variation near the origin in Fig. 2. The mathematical

Exponential Distribution Rayleigh Distribution

1 1
075 075" S
g 0.5/ g 0.5 i’;{/

0.25/ | o8l
% o35 05 055 1 % 0% 05 o7 i

f/Td t/Td

FIG. 2. Survival probability for exponential (left panel) and
Rayleigh (right panel) initial particle distributions as given in
Egs. (22) and (23). In each panel, the curves correspond to
(d/o)* =5, 1, 0.1, 0.01, and 0.001, from the bottom to the top
curve, respectively. Here 17, = d*>/2D and d is the characteristic
distance of the initial distribution. The near-origin behavior of Q(#)
is substantially different from that in Fig. 1 (see text).
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mechanism for this conversion is the removal of the isolated
essential singularity by integration and is essentially the
one encountered in the temperature (7)) dependence of the
specific heat of insulators. It is well known [33] that, through
a superposition of activated Einstein contributions, each of
which fails to describe the correct near-origin temperature
behavior, the Debye theory succeeds in predicting the correct,
dimension-driven 73 dependence. In our present problem,
the near-origin timedependence of Q(¢) plays the role of the
near-origin temperaturedependence of the specific heat.

Equation (14) for arbitrary capture rate, the demonstration
of the analytic reduction to the perfect absorber result Eq. (19),
and the superposition results Egs. (21), (22), and (23) are our
main results in this section. We have found that a passing
mention of the perfect-absorber central-trap localized result for
the centrally placed trap, Eq. (19), has appeared in a previous
analysis [17] of the effect of viscosity on electronic relaxation
in solution. Perfect-absorber studies for many traps have also
appeared in papers that, while not directly related to the present
analysis, are interesting in their own right [34].

C. Numerical inversion for noninfinite capture

Numerical Laplace inversion of Eq. (14) becomes necessary
for finite C;, equivalently for nonvanishing &. We use standard
inversion routines [35,36] and get satisfactory coincidence
with the direct numerical solution (via discretization) of the
partial differential equation except when the latter is inaccurate
because the Smoluchowski width is too narrow (see discussion
in the Appendix). Because of the confidence gained thus in
the inversion procedure, we use it for numerical calculations
throughout the rest of the paper.

We have explored the survival probability for various values
of the capture rate C;, equivalently of the dimensionless
parameter £. We have uncovered no surprises. A stronger
capture rate makes Q(f) decrease faster as expected. We
have not found it instructive to display the resultant figures.
We emphasize, however, that our procedure can produce the
evolution of the survival probability for arbitrary capture.

IV. ANALYSIS FOR ARBITRARY LOCATIONS

Situations in which the attractive center, the trap, and
the initial placement of the moving particle are at arbitrary
locations with respect to one another, are rich in their outcome.
This is expected. For instance, one might argue that, if the
initial location of the particle lies in-between the potential
center and the trap, the pull provided by the confining potential
would tend to act counter to the phenomenon of trapping and
that the potential would thus hinder trapping and enhance
survival. Yet, since at equilibrium, the particle in the trap-less
situation would tend to occupy an extent around the potential
center given by the Smoluchowski width, one might expect
survival, when the trap is present, to depend on whether the
distance of the trap from the potential center is disparate with
respect to the Smoluchowski width. Which effect takes over in
a given set of circumstances? These interesting situations are
difficult, or even generally impossible, to study via analytic
solutions. To investigate them, the straightforward way is to
use a numerical program that starts with Eq. (8) or Eq. (9),

PHYSICAL REVIEW E 88, 062142 (2013)

depending on the initial condition (general or localized), to
substitute in it the Laplace transforms of the propagators
evaluated numerically from Eqs. (2) and (3), and to perform the
numerical Laplace inversion by standard methods to produce
the final time-dependent survival probability. We pursue this
program systematically in this section.

A. Symmetrical placement of trap and particle

Let us first consider the case of no potential (y = 0),
the trap placed at x, = L/2, and the initial location of the
particle at xo = —L/2 so that the distance between the two
is L. The survival probability Q(¢) is given by the well-
known expression (20) valid for a diffusion rather than a
Smoluchowski equation, with 7; replaced by 7, = L?/2D. Let
us now introduce a potential with its attractive center precisely
midway between the trap and the particle (the potential center
is at 0) [see Fig. 3(a)], and examine the time dependence of the
survival probability as the potential steepness measured by y,
or more conveniently the dimensionless ratio L /o, is varied.
We display the results in Fig. 3(b).

Starting with the pure diffusive case L/o = 0, for which
o is infinite and the survival probability is given by Eq. (20),
we see that increase of potential steepness, equivalently of
L /o, has a remarkable nonmonotonic effect. Small increase
makes capture more efficient but beyond a certain value it has
the opposite effect. Why does this happen? The presence of a
potential surely makes the particle move faster, at least initially,
towards the trap as it travels to the attractive center. However,

(@) (b)

— — 1 :
\ - ; ! —VL/o=0
\ ! 1 ---Ljo=2
Vool L
L . + ~L/o=2.8§
Vg [ + --L/o=4.5
vV R 1% + L/o=05.17
vt Yoy 0.75 1% :
[ 'y i\ %
Vo (] i\ %
‘o 11 N *4*-_
Y 1! W\
v i 1\ %
\ L = T\%
Fany :i 0.5 3 4
1 \%
~ % < n N\
(BN s n
[ Bl
! R ":‘\‘»
Voot al
\ 1 L an
\ ; 0.25 BTy
, A
! ! Sy
1 1 AN
\ 1 AN
! A |
vl ',,\:\
A4 0 ‘ Ry
Ty 0 Ty 0 2 4 6 8 10
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FIG. 3. Nonmonotonic dependence of capture efficiency on
potential steepness for symmetrical placement of trap and particle.
Left panel represents the situation visually. Right panel shows the
nonmonotonic effect as the decay of Q(¢) is enhanced by increasing
the potential steepness but then hindered on further increase. Curves
are labeled by L/o, the ratio of the distance between trap and
initial location of particle to the Smoluchowski width. Four of the
traces in the right panel (for L/o = 0, 2, 2.5, and 4.5) correspond,
respectively, to the potential curves in the left panel.
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past the attractive center, the motion towards the trap is uphill
and therefore hindered by the potential. The introduction of the
potential thus has both a favorable and an unfavorable effect
on capture.

There is an approximate but instructive way to think
about what is happening by comparing where the trap lies
in relation to the Smoluchowski width. The potential pull
tends to bring the probability density at the trap location
to its equilibrium value in the absence of the capture. The
dependence of this value (indeed the value at any location
which is not the potential center) on the steepness of the
potential is nonmonotonic. This will become quantitatively
clear in Sec. V, Eq. (30), and Fig. 6 below.

B. One-sided placement of trap and particle

Let us now place the trap at the center and the particle placed
initially uphill at some distance L. This means x, = 0 and
xo = L. Nothing particularly interesting emerges as a potential
is introduced (with attractive center at the origin, as earlier)
and its steepness is varied: steeper potentials make trapping
easier. On the other hand, if we reverse the positions of the
trap and the particle, so that x, = L and xy = 0, interesting
nonmonotonic behavior is encountered again with variation
in potential steepness. These two cases of uphill particle and
uphill trap (respectively) are shown in Fig. 4, 7;, being, as in
Fig. 3, the time taken by the particle to traverse the distance
from its initial placement to the trap under purely diffusive
condition.

Why is there no symmetry in the effects of the placement of
the stationary trap and the moving particle? After all, survival
probability depends merely on their meeting. The answer is
obvious. A particle placed uphill with the trap at the potential
center is always helped by the potential steepness to get to the

(a) (b)
1 i T 1 i i i
—0L/o=0 A
1 ---Ljo=1 \
L [ PP L/o=14 Y
i --L/o =272 R
07504 + Llo =281 4ol \
' Iy : v \’\
5] \ERE
% \; \
1 SN
= ',:':|| “ N
= 05(! { osp ¢
S T e . ,\
1o N
l'—:\\ \«’\' N
+l| 7: \\ "\,\ N N,
A .
0.25 +l| A 0.25¢ ’@”\’ 3
+I - \\ "\r)\
+‘.\ E SN RN
+ o ~
Y .ol
0w i 0
0 2 4 6 10 0 2 4 6 8 10
t/TL t/TL

FIG. 4. Difference in the behavior of Q(z) for uphill and downhill
placement of trap with respect to initial particle location. The trap is
at the potential center in the left panel but uphill in the right panel
(initial particle location being at the potential center in this case). The
effect of increasing the potential steepness is monotonic in the former
but displays interesting features as in Fig. 3 in the latter.
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trap faster. The curves in the left panel of Fig. 4 therefore show
more capture as the potential steepness increases.

Our investigations have uncovered further subtle effects of
varying the relative locations of the trap, particle, and potential
center. We intend to present their analysis elsewhere.

V. ADDITIONAL METHODS OF ANALYSIS
AND INTELLIGENT DESIGN

We discuss two additional approaches for the analysis of the
problem under consideration. Coupled with the numerical and
exact investigations displayed in the previous sections, these
two help in understanding the phenomena that occur in this
field of reaction diffusion and assist in the intelligent design
of devices based on them.

A. Transfer rate approach

Laplace inversion programs sometimes have the reputation
of being inaccurate if the corresponding time-dependent
function possesses oscillations. The cases we have examined
do not show this feature. Nevertheless, it is helpful to develop
a method to simplify the analysis and perform calculations
without (numerical) inversion of Laplace transforms. Such a
method has been previously applied by one of the present
authors in the study of exciton transport in molecular crystals
[20] and proceeds through the definition of a transfer rate k
from the host system in which the particle moves to the trap.
We describe it below.

If the survival probability were an exponential in time, i.e.,
Q(t) = exp(—kt), the transfer rate would be given precisely
by k =1/ fooo Q(t)dt. For many systems the integral in the
denominator blows up. In such cases, it is helpful to introduce
a lifetime 7 into our starting Eq. (5) so that the probability
density, which we will now call p(x,t), obeys

ap(x.t t d ap(x.t
px.t)  pxt) 9 yxp.f)+ D p(x,1)
ot T ax 0x

—C18(x — x,)p(x,1).

(24)

If the moving particle is an excitation (e.g., Frenkel exciton
as in the case of photosynthesis) the presence of a finite
lifetime can be a consequence of the physics of the system:
It corresponds often to the radiative, and sometimes to
nonradiative, decay of the particle as the excitation turns into
a photon or disappears in other ways. If the moving particle
is an animal in the context of ecology, T could be its actual
lifetime, its finiteness caused by predators or natural causes.
If the physics of the system does not include a finite lifetime
for the particle, T in our present analysis should be regarded
as simply a probe time.

Now, given that the solution p(x,?) of Eq. (24) is trivially
related to the solution P(x,r) of Eq. (§) through p(x,t) =
P(x,t)exp(—t/t), we see, as shown elsewhere [20], that a
useful measure of the transfer rate is

k= |:~L — 6i| .
0(e) =1/t

It is generally the value, at ¢ = 1/7, of the Laplace transform
of the memory «(¢) in the expression of the evolution of the

(25)
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survival probability Q(¢) written as
dQ(1)
dt

For our specific problem involving the Smoluchowski equation
it is given, in terms of the propagators of the equation, by

+/ dt' k(t —t)Q() = 0. (26)
0

k:l[ UG } NC2)
T (I/Cl) + H(xrsxr) - H(xr’XO) e=1/t

The advantage of exploring the survival probability with
the help of the transfer rate is that, for a given set of parameter
values, k is a single quantity rather than a time-dependent curve
asis Q(t). When a lifetime 7 is actually present in the system,
the quantity k is perfectly suited for study. When there is no
actual 7, the rate k is to be examined for various values of T
interpreted as a probe time: Small values correspond to probing
at short times, while large values correspond to accumulated
probing at long times.

Analytic expressions for the transfer rate are possible in
the case of a trap at the center of the attractive potential. For
arbitrary capture rate, Eq. (27) becomes

HW/4-12y0).1/4(¥ T1)

kT = T 1
&+ B(57:3) — HWaa-a/270.14(r0)

. (28)

where

1
H = (]/‘[1)71/46()”:]/2)1—1 (_2)/‘[ ) .

For perfect absorption, £ vanishes. The left panel of Fig. 5
depicts the evolution of the transfer rate when the trap is at the
center of the potential for two different capture parameters,
& = 0.1 (line) and & = 0 (dashes). The transfer rate increases
as the initial location of the particle gets closer to the center
of the attractive potential and is at a maximum when the
particle is at the center, as expected. For perfect absorption it
reaches infinity for a particle initially placed at the trap location
(dashes) as full capture occurs instantly. Further studies of our
expression show that the width of & as a function of x¢ depends
on o: As o increases the width decreases. The strength of k
depends on the capture rate as well as on the probe lifetime 7.
A shorter lifetime or a stronger capture rate both result in an
increase in the transfer rate. All effects are as expected.

The right panel of Fig. 5 depicts the dependence of the
transfer rate on the potential steepness y. We take the initial
distance between trap and particle to correspond to 7, /T =
0.05, in one case taking x, = 0 with xo = L and in the other,
x, = L with xo = 0. When the trap is placed at the center, the
transfer rate increases monotonically (line). However, when
the trap is placed uphill (dots), a nonmonotonic transfer rate
emerges as discussed earlier.

B. Approximation for small capture rate

The perfect (infinite) capture case has allowed us to
present exact, i.e., analytic, solutions in Sec. III. The opposite
extreme of small capture suggests the following approximation
procedure. If C; is sufficiently small, £ in Eq. (14), or more
generally 1/C; in Eq. (8), overwhelms the other term in the
respective denominator and leads to a simplification. Working
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FIG. 5. Dependence of the transfer rate k. Left panel: The trap is
placed at the center of the potential and  is as given in Eq. (28). The
two curves correspond to two values of the capture parameters &: 0.1
(line) and 0 (dashes). The strength of the attractive potential is fixed
to yt = 0.02. Right panel: The potential steepness represented by y
(in units of 1/7) is varied for two configurations of trap and initial
position placement showing the nonmonotonic effect in one but not
the other. Dots (left y axis) and line (right y axis) correspond to the
respective placement of the particle and the trap at the center of the
potential, the other being placed uphill. In both cases t;, /T = 0.05 and
/DJt/C; = 0.0032. Central placement of trap results in monotonic
dependence of k on y but central placement of particle leads to the
occurrence of an optimum steepness of the potential at which k has a
maximum.

from the more general expression in Eq. (8), we see that, for
small capture rate, one may approximate

dQ(t)
dt

The time rate of Q(¢) is expressed by this approximation to be
the negative of the product of C; and the probability density
at the trap site for the given initial condition but computed
from the homogeneous (i.e., trap-less) system. Furthermore,
under the situation that the relaxation under the potential
is sufficiently faster than capture, we may consider (as an
approximation) that the steady state distribution Pg,(x,) is
achieved before capture begins, and write

dow) _ _ (e W
dt - _ClPss(-xr)— _<ﬁ)—

Care must be taken, of course, not to extend this approximation
to the point that the survival probability becomes negative. The
important point to notice is that Eq. (30) transparently shows
nonmonotonicity in the behavior of capture efficiency as a
function of the steepness of the potential. Differentiation of
dQ(t)/dt with respect to the Smoluchowski width o shows
that optimum capture occurs when that width is of the order
of the trap site distance from the potential center, explicitly
when o = £+/2x,. This behavior is seen in the plot of the
value of the steady state distribution Pg,(x) at x = x, in the
right panel of Fig. 6. In the left panel, numerically obtained
(exact) solutions (circles, squares, solid line) for the decay rate

=-C f dxy I(x,,x0,1) P(x0,0). 29)

o]

(30)
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FIG. 6. Small capture rate approximation given by Eq. (30).
Left panel: numerical (exact) solution for the decay rate of Q(r)
for three values of £ as shown. They correspond, respectively, (see
text) to o values in the ratio 1 : 1.4 : 3.5. The approximation, which
is represented by the three asymptotic (constant) values is seen to
describe the evolution adequately at long times. The lowest o value
corresponds to circles and the highest to the solid line. Thus, the
nonmonotonic effect appears at long times. Right panel: Py (x,)
as a function of ¢ in units of the trap distance from the potential
center. Because Py (x,) is proportional to the decay rate in the
approximation, the fact that it increases, peaks, and then decays,
is a clear manifestation of the nonmonotonicity effect.

of the survival probability are compared to the approximate
predictions of Eq. (30) (dots). The former are time dependent
as the probability distribution relaxes to the steady state but
approach the respective constant values given by the latter at
large times. Three cases of the imperfection parameter £ [see
Eq. (15)] are shown. Because C; and D are held constant for the
three cases, these values correspond to values of o that are in
the ratio 1 : 1.4 : 3.5 (circles, squares, solid line) respectively.
The large time values of the decay rate, displayed as the
horizontal asymptotes in the plot, show the nonmonotonicity
effect.

VI. CONCLUDING REMARKS

The purpose of this paper has been the construction of
a reaction diffusion theory, explicitly in one dimension, but
generalizable to higher dimensions, for random walkers mov-
ing under an attractive harmonic potential. The appropriate
equation is the Smoluchowski equation augmented by capture
terms. Our basic starting point is accordingly Eq. (5). Our basic
resultis Eq. (8) and applies to arbitrary strength of capture, not
merely to perfect absorption. The amount of departure from
perfect absorption is measured by the dimensionless parameter
& which, as Eq. (15) details, is inversely proportional to the
capture rate C; and directly proportional to the Smoluchowski
width o and to the rate y with which the particle is pulled to the
attractive center. Although our theoretical development is thus
capable of addressing arbitrary amounts of capture, perfect
absorption yields several exact (analytical) results when the
trap location coincides with the attractive center. We have
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presented them in Sec. IIl. They include, as Figs. 1 and 2
show, the explicit demonstration of the effect of the potential
on the survival probability, the limit to the pure diffusive result,
and interesting effects of specific physical forms of the initial
distribution of the particle. The latter finding provides, in
principle, a method to extract information about the initial
particle placement through short-time features of the time
dependence of the survival probability.

Arbitrary relative locations of trap, potential center, and
particle at the initial moment result in consequences that are
physically more interesting but necessitate numerical proce-
dures of analysis. We have developed two such procedures,
one based on a discretization method applied to the partial
differential equation and the other based on a numerical
Laplace transform (direct and inverse). We have studied the
differential equation discretization method in the Appendix
and shown, through comparison to analytic results, that it is
usable in all situations in which the Smoluchowski width is
not too small relative to characteristic distances in the problem.
Then, through a comparison of the discretization procedure to
the Laplace method, we have shown the latter to be reliable
and have used it throughout the rest of the paper.

Our results have uncovered noteworthy consequences of a
potential: Its introduction can help reaction (enhance capture)
but also can hinder it if the potential pull is large enough.
Section IV, in particular Figs. 3 and 4, shows the results of
our systematic study with symmetrical and nonsymmetrical
placement of trap and particle relative to the attractive center.
Numerically observed features are satisfactorily explained in
terms of uphill versus downhill motion of the particle in the
potential and also by a study of where the trap lies relative
to the equilibrium Smoluchowski distribution. Two additional
methods of analysis are provided in Sec. V: one based on a
transfer rate developed earlier by one of the present authors
in a different context and an approximate analysis for small
capture based on the equilibrium Smoluchowski distribution.
The former is represented by Fig. 5 and Egs. (27) and (28), and
the latter by Fig. 6 and Eq. (30). Nonmonotonic behavior of
capture efficiency as a function of potential steepness is seen
in both cases. It is particularly transparent in Eq. (30): The
steady state probability distribution, to which the rate of the
survival probability is proportional, is clearly nonmonotonic
as a function of the Smoluchowski width o = /2D /y.

We believe that a systematic reaction diffusion theory based
on the Smoluchowski equation has not been provided earlier
in the literature [37]. Applications that we envisage are, as we
have explained in the Introduction, to a variety of microscopic
and macroscopic systems and phenomena including artificial
photosynthetic machines and enzyme ligand binding, and
animal behavior and transmission of infection in the spread
of epidemics.
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APPENDIX: ACCURACY OF NUMERICS EMPLOYED

In the following we demonstrate the extent of accuracy
along with its limits, of one of the numerical methods we
employ in the present paper, viz., the direct solution of
the partial differential equation through discretization. Our
purpose is to show details of the method, its success in the
simplest case of the Smoluchowski equation without capture,
i.e., Eq. (1), and the range of parameters where its accuracy
begins to drop. Below, we compare the results of the numerical
procedure with exact (analytic) expressions for this captureless
case. This comparison provides confidence in the accuracy of
the procedure as well as information about when not to use it
(when the Smoluchowski width is too narrow). On the basis of
this information we use confidently (in Secs. III and I'V) both
the analytic Whittaker function expression derived in Eq. (14)
and another seminumerical consisting of Laplace inversion of
analytic expressions we obtain.

Equation (1) can be looked upon as the continuum limit of
the discrete equation

dP, (1)
dt

= F[Pm-H + Pt — 2Pm]
+ flm + D) Py — (m — D) Py1].

Here P, (¢) is the probability of occupation of a site m at time
t, F is the nearest-neighbor hopping rate, and f is the rate
of motion due to the attraction towards the center which is at
m = 0. If a is the intersite distance, the continuum limit that
transforms the above equation into the Smoluchowski equation
(1) is

(AL)

F — 0o, Fa?>— D, f=v/2,
Py(t)/a — P(x,t).

a— 0,

ma — x,

Therefore, if we write my = xo/a, the combination of the
above correspondence with the analytic propagator expression,

0.06

S 003
g,

0.1

S 0.05
[«

‘
o Numerical solution H
Analytic solution

0 0.25 0.5 0.75 1
t/Tl

FIG. 7. Comparison of the analytic and numerical solutions for
the time evolution of probability density to find the walker at x =
0, 2, and 5 in units of the lattice constant a. The initial condition is
P(x,0) =8(x — 5a), and f/F = 0.01. The total number of lattice
points is 2001. Time is plotted in units of ;.
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FIG. 8. Comparison of the analytic and numerical solutions for
the spatial distribution of the probability density at three different
times. Agreement is excellent. The number of lattice points, and f/F
as in Fig. 7. The value of ¢/7; in the three panels from top down is
0.24, 0.40, and 1, respectively.

Eq. (2), gives

SIE  m—eimo f1—e411)
71— e /1)
== nm,mo(t)-

We use the middle expression above as the consequence of
the analytic Smoluchoski equation in the discretized context,
find I1,, ,u,(¢) numerically for a given m( and f/F by using

all(x,xq,t) =

0.55

P(0,1)

FIG. 9. Inaccuracies in the discretization procedure that develop
as the Smoluchoski width becomes smaller. Shown is the time evolu-
tion of the probability density at x = 0 for various values of f/F.From
the lower curve to the top, f/F varies as 0.01,0.1,0.2,0.3,0.4,0.5,0.8.
The circles and the solid lines depict the numerical and analytic
solutions, respectively. Other parameters are as in Figs. 7 and 8.
Noticeable departures are visible in the top four curves.
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standard MATLAB procedures such as Ode45, and compare the
two to ascertain the extent of the accuracy of the numerical
procedure.

The result of the comparison for the initial condition at my =
10, for a total number of lattice sites equal to 2001 with periodic
boundary conditions with f/F = 0.1 is shown in Figs. 7 and
8 where time is plotted in units of Fr. In Fig. 7 we show
the time evolution of the probability density at three specific
locations and in Fig. 8 the spatial distribution of the probability
density at three specific times. Circles depict the numerical
solution, while lines are the analytic solution. Agreement is
excellent and demonstrates the generally satisfactory nature of
the numerical procedure.

The accuracy of our numerical procedure relies on the ratio
f/F being small. This quantity is inversely proportional to
the square of the equilibrium width of the Smoluchowski
dynamics; in discrete space, this width should not be smaller

PHYSICAL REVIEW E 88, 062142 (2013)

than the lattice constant a of the discretization. The numerical
method based on discretization of the differential equation
will thus begin to give inaccurate results when a/o = / f/F
begins to get large. To demonstrate this limit of accuracy, we
show Fig. 9. Our numerical solution starts to show deviation
from the analytic solution when f/F exceeds 0.15. Figure 9
shows the evolution of the probability density at site m = O for
different values of f/F.

We conclude, first that for sufficiently small f/F the
discretization of the differential equation is a reasonably
accurate procedure (because it reproduces well the analytic
results), second that the analytic expression involving the
Whittaker function, Eq. (14), is accurate as its consequences
agree with those of the present procedure (see Sec. III)
provided the latter is used with small f/F, and finally that
for large f/F itis best to use the Laplace inversion numerical
procedure as the discretization fails.
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