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Abstract A theory of the spread of epidemics is formulated on the basis of pairwise
interactions in a dilute system of random walkers (infected and susceptible animals)
moving in n dimensions. The motion of an animal pair is taken to obey a Smoluchowski
equation in 2n-dimensional space that combines diffusion with confinement of each
animal to its particular home range. An additional (reaction) term that comes into play
when the animals are in close proximity describes the process of infection. Analytic
solutions are obtained, confirmed by numerical procedures, and shown to predict a sur-
prising effect of confinement. The effect is that infection spread has a non-monotonic
dependence on the diffusion constant and/or the extent of the attachment of the animals
to the home ranges. Optimum values of these parameters exist for any given distance
between the attractive centers. Any change from those values, involving faster/slower
diffusion or shallower/steeper confinement, hinders the transmission of infection. A
physical explanation is provided by the theory. Reduction to the simpler case of no
home ranges is demonstrated. Effective infection rates are calculated, and it is shown
how to use them in complex systems consisting of dense populations.
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1 Introduction

The purpose of the following is to construct an analytic theory of the transmission
of infection in the spread of epidemics on the basis of a simple but exactly sol-
uble model of interacting random walkers representing animals moving about on
the terrain and infecting one another on encounter. Seminal contributions (Anderson
and May 1991; Okubo and Levin 2001; Hethcote 2000; Brauer and Castillo-Chávez
2001) involving concepts such as mass action, SIR, and the basic reproductive rate
R0 launched this field of research. The field derives its importance from human rel-
evance as well as the theoretical difficulties of its intellectual challenge. Spatial con-
siderations were introduced into the investigations independently by various authors
(Dickmann et al. 2000; Okubo and Levin 2001; Abramson and Kenkre 2002; Aguirre
et al. 2002; Cantrell and Cosner 2003; Kenkre 2003; McKane and Newman 2004;
Kenkre et al. 2007; MacInnis et al. 2008) giving the studies a kinetic equation flavor.
Missing from some of these studies were confinement features that arise in animal
motion from home ranges and yet are clear and compelling in the light of field obser-
vations (Giuggioli et al. 2005, 2006; Abramson et al. 2006; MacInnis et al. 2008).
These and other issues have made it essential to undertake a fundamental study of
the transmission of infection in terms of interacting random walks specially under
confinement.

2 Model and Method of Analysis

Our model starts with just two animals, one initially infected and the other initially
uninfected (susceptible), respectively, denoted by 1 and 2, performing random walks
around respective attractive centers at R1 and R2, with a diffusion constant D, there
being the possibility of the uninfected individual getting infected at a rate proportional
to C when the two occupy the same position. The central quantity that serves as the
focus of our calculation is the joint probability density P(r1, r2, t) that the infected
animal is at r1 and the susceptible animal is at r2. Given this definition, P(r1, r2, t)
vanishes when the susceptible animal gets infected and the infection problem becomes
formally similar to a Frenkel exciton annihilation problem analyzed a number of
years ago in a system of molecular aggregates (Kenkre 1980). The present problem
is considerably more complex, however, as a consequence of the tethering of the
individuals to separate centers. Guided by the procedures set out in the exciton analysis
(Kenkre 1980), we consider a capture problem in a space of twice the number of
dimensions as the space in which each walker moves, introduce attractive quadratic
potentials of steepness γ around the centers at R1 and R2, and write, applicable to
s-dimensions in general,

∂ P
∂t

= ∇1 ·
[
γ (r1 − R1) P

]
+ ∇2 ·

[
γ (r2 − R2) P

]

+ D
(
∇2

1 + ∇2
2

)
P − δ(r1 − r2)C P. (1)

In terms of the propagator (Green function) for the homogeneous problem,
Π(r1, r0

1, r2, r0
2, t), the solution in the absence of the infection rate for any initial
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placement of the two animals given by P(r0
1, r0

2, 0) would be

η(r1, r2, t) =
∫ ∞

−∞

∫ ∞

−∞
dsr0

1 dsr0
2 Π(r1, r0

1, r2, r0
2, t)P(r0

1, r0
2, 0). (2)

When infection is present, we write, as a consequence of the linearity of the equations,

P(r1, r2, t)=η(r1, r2, t)−C
∫ t

0
dt ′

∫ ∞

−∞
dsr ′

1Π(r1, r ′
1, r2, r ′

1, t−t ′)P(r ′
1, r ′

1, t ′).

(3)

Defect technique procedures (Hemenger et al. 1974; Montroll and West 1979; Kenkre
1982a, b; Kenkre and Parris 1983; Szabo et al. 1984; Redner 2001; Redner and Ben-
Avraham 1990; Spendier and Kenkre 2013; Spendier et al. 2013) along the lines
originated in the analysis of the exciton annihilation problem mentioned above (Kenkre
1980) proceed by Laplace transforming Eq. (3), setting r1 = r2, and integrating over
r1 in the appropriate space of s dimensions. An important result is

∫ ∞

−∞
dsr1 P̃(r1, r1, ϵ) =

∫ ∞

−∞
dsr1 η̃(r1, r1, ϵ)

− C
∫ ∞

−∞
dsr ′

1

∫ ∞

−∞
dsr1 Π̃(r1, r ′

1, r1, r ′
1, ϵ)P̃(r ′

1, r ′
1, ϵ),

(4)

where ϵ is the Laplace variable and tildes denote Laplace transforms. Motivated by the
so-called nu-function analysis introduced in capture problems (Kenkre 1982b; Kenkre
and Parris 1983) [for a recent review and application, see Spendier and Kenkre (2013)]
and assisted by the observation that the integral of Π̃(r1, r ′

1, r1, r ′
1, ϵ) over the entire

domain of r1 (i.e., all space) appearing in Eq. (4) is independent of r ′
1, we introduce

the symbol ν̃(ϵ) to denote that integral,

ν̃(ϵ) =
∫ ∞

−∞
dsr1 Π̃(r1, r ′

1, r1, r ′
1, ϵ), (5)

and succeed in obtaining, in the Laplace domain, an explicit solution for the joint
probability (density) that the two animals occupy the same position,

∫ ∞

−∞
dsr ′

1 P̃(r ′
1, r ′

1, ϵ) = µ̃(ϵ)

1 + Cν̃(ϵ)
. (6)

The expression in Eq. (6) contains two quantities that are key to the analysis. The
first of these, ν(t), whose Laplace transform is defined in Eq. (5), is the probability
(density) that the locations of the two animals coincide (whatever that location) if at
a time t earlier their locations also coincided. The second key quantity, µ(t), whose
Laplace transform is
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µ̃(ϵ) =
∫ ∞

−∞
dsr ′

1 η̃(r ′
1, r ′

1, ϵ)

=
∫ ∞

−∞
dsr ′

1 ×
∫ ∞

−∞

∫ ∞

−∞
dsr0

1 dsr0
2 Π̃(r ′

1, r0
1, r ′

1, r0
2, ϵ)P(r0

1, r0
2, 0), (7)

is the probability (density) that the two animals occupy the same location at the present
time (whatever that location) if at a time t earlier they occupied locations as per the
given initial condition of the problem. Both refer to the problem without infection
(C = 0). They are integrals (over the s-dimensional space) of the two-particle joint
probability density and have the dimensions of reciprocal length raised to s. The rest
of the calculation is straightforward. Knowledge of the propagators of the system
generally in the presence of constraining potentials gives ν and, in combination with
the given initial conditions, yields µ. The two together with Eq. (6) provide all that is
necessary to obtain the infection probability and the nuances of its behavior.

3 Infection Curve and its Non-monotonic Dependence

When a definite infection event occurs, the joint probability density P(r1, r2, t) drops
to zero. The infection probability is, therefore,

I(t) = 1 −
∫ ∞

−∞

∫ ∞

−∞
dsr1dsr2 P(r1, r2, t), (8)

and, from Eq. (3), is obtained in the Laplace domain as

Ĩ(ϵ) = 1
ϵ

[
µ̃(ϵ)

(1/C) + ν̃(ϵ)

]
. (9)

Further insight requires the evaluation of the key quantities µ and ν, which follows
from the form of the propagators appropriate to Eq. (1). These are well known to
be Gaussian, to be multiplicative in Cartesian coordinates as one proceeds to higher
dimensions, and to involve the saturating time T (t) = (1/2γ )(1−e−2γ t ) that emerges
from standard Ornstein–Uhlenbeck arguments (Reichl 2009; Risken 1989). The 2s-
dimensional propagator and the resulting ν and µ functions, the latter for arbitrary
initial placement, are

Π(r1, r0
1, r2, r0

2, t) =
(

1
4π DT (t)

)s

×
s∏

β=1

e−
(

xβ
1 −hβ

1 −(x0β
1 −hβ

1 )e−γ t
)2

+
(

xβ
2 −hβ

2 −(x0β
2 −hβ

2 )e−γ t
)2

4DT (t) ,

ν(t) =
(

1√
8π DT (t)

)s s∏

β=1

e− (1−e−γ t)2(
hβ

1 −hβ
2

)2

8DT (t) ,
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µ(t) =
(

1√
8π DT (t)

)s s∏

β=1

e−
(

hβ
1 −hβ

2 +
((

x0β
1 −hβ

1

)
−

(
x0β
2 −hβ

2

))
e−γ t

)2

8DT (t) , (10)

where the label β runs from 1 to s, and the initial position and home range center of
the susceptible animal have the respective x-components x0β

2 and hβ
2 . The rest of the

notation is obvious.
For the motion of two 1-dimensional walkers (s = 1), we do not need the index

β, and if we make the natural assumption that the animals are located initially at
their own respective centers, the quantities ν(t), µ(t), which are closely related to
Smoluchowski propagators connecting the two home range centers, are given by

ν(t) = e− H2
8DT (t) (1−e−γ t)2

√
8π DT (t)

; µ(t) = e− H2
8DT (t)

√
8π DT (t)

. (11)

They equal each other for large times but begin quite differently at the initial time:
µ(0) vanishes while ν(0) is infinite. Here, H = h1 − h2 is the distance between the
two home range centers.

The infection curve I(t) is now obtained by calculating (see e.g., Roberts and
Kaufman 1966) the Laplace transforms of Eq. (11), substituting them in Eq. (9), and
inverting the transform. We perform the inversion numerically, with the help of a
simple code implemented in MATLAB, and verify the results by direct numerical
solution of the partial differential Eq. (1). The reader might find it useful to consult a
related analysis given in an appendix (Spendier et al. 2013) where a similar procedure
is explained in detail. The validation procedure results in agreement that is excellent
except for confining potentials that are so steep that the direct numerical procedure
used for verification breaks down. Our calculated I(t) for initial location of the animals
at their home range centers, and for an assumed contact rate parameter C1 equal to 0.3
in units of 2D/H , is displayed in Fig. 1 as a function of t scaled to τH , for various
steepness values of the confining potential. Here, τH = H2/2D is the time required
for either animal to traverse diffusively the distance between the two home centers.
We attach the suffix 1 to C to emphasize that this result is 1d. Striking behavior is
apparent in Fig. 1.

Recall that σ = √
2D/γ is the width of the steady-state distribution of the Smolu-

chowski walker in 1d. We keep D and the inter-center distance H constant, and
increment γ , thereby changing σ . The case of no confining potential corresponds to
the thick solid curve (H/σ = 0). We gradually increase the steepness of the confine-
ment potential , giving the latter parameter the respective values 0.6 (thin solid line),
1.0 (dotted), 1.64 (dot-dashed) and 2.12 (dashed). Generally, as time proceeds, I(t)
rises from 0 and saturates to 1. Infection may be said to occur faster as the confining
potential becomes steeper but only for relatively small values of γ . Further increases
make the infection proceed more slowly. Vertical arrows between curves show this
march graphically. Reversal in their direction marks the interesting phenomenon.

This non-monotonic behavior is noteworthy, one of the primary results of our analy-
sis, and is also observed if the diffusion constant of the animals is varied keeping the
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Fig. 1 Non-monotonic variation of the infection curve I(t) with change in γ , the steepness of the potential
confining the animals to their home ranges. Time is scaled to τH ; C1 scaled to 2D/H equals 0.3. Starting
with the unconfined case (γ = 0), increase in γ makes infection more effective for small values of γ but less
effective for larger values. The value shown for each line in the legend is of

√
γ τH . This quantity equals

H/σ, the ratio of the inter-center distance to the steady-state Smoluchowski width

potential steepness constant. It arises from the interplay of three quantities, the diffu-
sion constant D, the steepness γ and the inter-center distance H which here is also the
distance between the initial locations of the animals. For a given value of H, changes in
D or γ exhibit the phenomenon. Varying H does not: maximum transmission occurs
when H = 0, i.e., when the animals do not have to move to find each other for the
infection to be propagated. The key parameter is γ τH = H2γ /2D which is nothing
other than (H/σ )2: For a given H, optimum transmission of infection occurs when
the parameter equals 1, particularly in the contact-limited case. More generally, the
critical value is different from 1. By the term contact-limited, we mean the case that C
is much smaller than the corresponding motion parameter. In such a case, the contact
process of infection when the animals meet, rather than the motion, determines the
overall infection event (see Eq. 9).

4 Reduction to the Case of No Confinement

Given that many of the previous quantitative theories do not explicitly incorporate
home range confinement, it is important to ask what our model calculation predicts for
the simpler case of such free diffusion. In that case, a full analytic solution is possible.
With γ → 0, ν(t) and µ(t) in 1d are simple propagators of the diffusion equation,

ν(t) = 1√
8π Dt

; µ(t) = 1√
8π Dt

e− H2
8Dt . (12)

Their Laplace transforms are known. With the introduction of a time θ = 8D/(πC2
1 )

that incorporates the diffusion constant and the contact parameter C1, we have for the
infection probability in the Laplace domain,
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Ĩ (ϵ) = 1
ϵ

(
e−√

ϵτH

1 +
√

ϵθ

)

. (13)

Inverse transformation gives the analytic time domain result

I (t) = erfc
(√

τH

4t

)
− e

(√
τH
4t + t

θ

)

erfc

(√
τH

4t
+

√
t
θ

)

. (14)

We have not encountered this result in the epidemic literature earlier. However, curi-
ously, we have found that the expression has been reported independently by several
authors in totally unrelated reaction diffusion contexts (Carslaw and Jaeger 1959;
Abramson and Wio 1995; Redner 2001; Spendier and Kenkre 2013). The further sim-
plification of an infinite contact rate (motion limit), leading to a vanishing θ , yields
the simple diffusion result that the infection curve is given by a complementary error
function of argument

√
τH /4t . The time dependence of Eq. (14) is depicted as the

thick solid line γ = 0 in Fig. 1.

5 Effective Rates of Infection and Extension to Dense Systems

The foregoing analysis, while exact for dilute systems, is not immediately applicable
to dense systems because they contain numerous (rather than one) interacting pairs.
The dynamics, and even identity, of the pairs, evolve in time. We have developed, and
plan to report in a forthcoming publication, an approximate kinetic equation theory
applicable to such situations, along the lines of earlier analysis (Kenkre 2003; Kenkre
et al. 2007). For use in that theory, we extract from the above single-pair analysis an
effective infection rate. The spirit of this extraction is the same as in the calculation
of a Fermi golden rule rate for describing transitions in a complex quantum system.
The detailed procedure is, however, different. It is explained next.

First, we notice that Eq. (9) for the infection probability in the Laplace domain can
be cast in the form

Ĩ(ϵ) = α̃(ϵ)

ϵ (ϵ + α̃(ϵ))
,

where we will term the quantity α̃(ϵ) an infection memory. It is given in the Laplace
domain by

α̃(ϵ) = ϵµ̃(ϵ)

(1/C) + ν̃(ϵ) − µ̃(ϵ)
. (15)

If the Markoffian approximation were to be made on this infection memory, i.e., if
α̃(ϵ) were to be replaced by an ϵ-independent constant α, the infection probability in
the time domain, I(t), would be simply an exponentially rising function 1−e−αt . It is
clear that this function has, in essence, the typical shape seen in Fig. 1. Obviously, the
extraction of a single infection rate from the full dynamics of the infection probability
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Fig. 2 Dependence of the effective infection rate α from Eq. (16) on the contact rate C1 (scaled to 2D/H )
in the left panel and on the confining potential steepness γ in the right panel. Both α and γ are scaled to
1/τH . The left panel shows that α is linear in the contact rate for small values of the latter but saturates to the
motion-limited value (0.56 in this example) for large values. The right panel shows the non-monotonicity
effect on infection: As confinement steepness γ increases, α rises to a peak and decreases for larger γ . For
the right panel, C1 in units of 2D/H is 15

is provided by taking the Markoffian approximation of the infection memory α̃(ϵ)

through the limit ϵ → 0.

α ≡ lim
ϵ→0

α̃(ϵ) = µ(∞)

(1/C) + (1/M)
. (16)

Here, µ(∞) is the limit as t → ∞ of µ(t), and we have introduced a motion parameter
M as the reciprocal of

∫ ∞
0 dt [ν(t) − µ(t)]. An Abelian theorem has been used in

the second equality in Eq. (16) to express α in terms of quantities in the time domain.
The effective rate now appears as the product of the probability in the steady state
that the two walkers occupy the same position, independently of the initial condition
(essentially the numerator), and a combined rate involving the contact parameter and
a motion parameter (essentially the reciprocal of the denominator). Thus, α equals
simply Cµ(∞) in the contact-limited case, i.e., when C << M. In the opposite limit
M << C, infection is governed by the motion and α is Mµ(∞).

This limiting behavior for extreme relative values of the contact and motion parame-
ters is clear in the left panel of Fig. 2. The motion parameter M describes an accumu-
lated integral of the difference between the two probability densities explained above
of the two walkers coinciding in location. The non-monotonicity effect is displayed
in the right panel of Fig. 2 where the infection rate α rises, peaks, and drops as the
potential steepness is varied.

Equation (10) allows the evaluation of µ(∞) in Eq. (16) for arbitrary dimensions

s as being
[
(1/σ

√
2π)e−H2/2σ 2

]s
where σ = √

2D/γ is the width of steady-state
distribution in 1d. Calculating M involves the evaluation of an improper integral
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which is convergent in 1-d (Sugaya 2014) but presents the standard difficulties that
arise in reaction diffusion problems in dimensions higher than 1 if reaction is taken to
occur at points (regions of vanishing dimension) as we have done here. Generalizing
the treatment to include reaction in finite regions solves this problem. It is also of
interest to include the consequences of the introduction of an additional decay into
the system. Such a decay may arise from radiative lifetimes as explained for excitons
in molecular crystals earlier (Kenkre 1982a), from finite lifetimes τ of the infected
animals as they may die from natural death or from predator attack, or from finite
lifetime of the infection itself. The latter may be caused by the animals recovering
from being infective. In such cases, one takes the limit ϵ → 1/τ rather than ϵ → 0,

and Eq. (16) is replaced by

ατ =
∫ ∞

0 dte−t/τµ(t)

(1/C) +
∫ ∞

0 dte−t/τ [ν(t) − µ(t)]
. (17)

In case a finite lifetime is absent in the given problem, it is perfectly natural to introduce
it as a probe time associated with measurement.

6 Conclusions

The calculation we have presented is precise for the limited model considered and is
valid for movement both with and without spatial constraints imposed on the moving
animals. The spatial constraint would represent the existence of home ranges. In the
presence of spatial constraints, the analysis has uncovered a remarkable phenomenon:
Infection efficiency is non-monotonic when the steepness of the confining potential,
or the animal diffusion constant, is varied. A similar simpler phenomenon occurs in
reaction diffusion scenarios for trapping considerations under a confining potential,
as we have recently shown (Spendier et al. 2013).

In our present context, each of the two quantities, the steepness of the confining
potential and the animal diffusion constant, has a critical value on both sides of which
infection becomes inefficient. An understanding of the curious effect we observe can
be achieved at various levels. The effect involves three quantities, the distance H
between the centers of the home ranges, the diffusion constant D, and the potential
steepness γ . Combined into a single parameter

√
H2γ /2D, which equals H/σ , the

quantities signal inefficient transmission of infection when variations in D or γ make
the parameter differ from its optimum value. In the contact-limited case, the optimum
value is 1 and corresponds to the static statement that the width of the steady-state
distribution of the Smoluchowski equation equals the distance between the home
centers or to the dynamic statement that the time taken by the walker to traverse the
inter-home range distance H diffusively equals the time 1/γ characteristic of free
motion of the walker to the center under the action of the potential. Away from the
contact limit, the optimum value changes from 1 because of contributions from what
has been explained as the motion parameter M (see earlier text). Thus, in the right
panel of Fig. 2, for the particular variable values we have assumed, it happens to equal
1.97.
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Since our analysis has employed Laplace transforms and their numerical inversion,
a validation procedure by comparison to direct numerical solution of the differential
equation used is highly desirable. Such validation has been done for all cases consid-
ered. It has not been described in the present paper, except for a passing statement
following Eq. (11). We have published a closely related validation in detail recently
on a subject dealing, not with epidemics, but with trapping phenomena. It is given in
its entirety in an appendix in Spendier et al. (2013). The results of the validation, in
our present epidemics context, is excellent.

The (quadratic) confinement potential we have considered in Eq. (1), and conse-
quently throughout the analysis, has been selected for two reasons. The first is the
simplicity of a linear restoring force it represents. The second is the analytic tractabil-
ity it provides. Explicit expressions for the propagators can also be obtained for linear
(rather than quadratic) and box potentials (Chase et al. 2014). They too result in the
behavior we have discussed. Generally, the analysis we have given carries over, in its
qualitative conclusions, for any confinement potential.

The basic assumption of the present analysis, that a simple random walk, conse-
quently a diffusion equation for the evolution of the probability density, is appropriate
for the description of animal motion, is in keeping with most field observations. As
an example, we cite the investigations of the movement of Peromyscus manicula-
tus rodents carried out in Abramson et al. (2006) in the context of the spread of the
Hantavirus epidemic—distributions in mark-recapture experiments were found to be
essentially Gaussian and the description of the simple random walk to be quite appro-
priate. In any particular case, when this is not true, one would modify Eq. (1) to
incorporate such features as the Lévy nature of the walks (Plank and Codling 2009;
Petrovskii et al. 2011), for instance, by introducing general memory functions to
describe appropriate anomalous motion (Giuggioli and Kenkre 2014).

Our analysis is applicable for arbitrary initial conditions. In addition to being exact
for the simplified model considered, it provides a sound basis for obtaining expressions
for infection rates that can be used in approximate, but practical, theories of the spread
of infection. Such extended theories are appropriate in realistic scenarios involving
dense animal populations, will be reported elsewhere, and consist of a kinetic equations
setup as in our earlier treatments (Abramson and Kenkre 2002; Kenkre 2003; Kenkre
et al. 2007). The infection (aggression) rates in these theories are computed from the
present analysis rather than being simply postulated. The formalism is directly useful
for the study of the spread of zoonotic diseases such as the Hantavirus (Yates et al.
2002) in which infection spreads as the result of the movement of rodents on a terrain.
It should also find use in other contexts as in the study of West Nile Virus (Nasci et al.
2001; Strausbaugh et al. 2001; Kenkre et al. 2005) within the field of epidemics and
also in general studies of reaction diffusion and interacting random walks.
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