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This theoretical study of the vibrational relaxation of a molecule in interaction with a reservoir uncovers 
a noteworthy temperature (T ) dependence of the time evolution of the relaxation. Its rate increases 
with T in one interval but decreases in another. The feature arises not for a weak molecule-reservoir 
interaction but only for coupling strong enough to require polaronic dressing transformations. Our 
treatment, based on a recent generalization of the well-known Montroll–Shuler equation for relaxation 
and an explicit calculation of bath correlations from the microscopically specified Hamiltonian, could 
provide an alternative explanation of an “inverted” T -dependence of relaxation in an experimental report 
by Fayer and collaborators on W(CO)6 dissolved in CHCl3.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Vibrational relaxation of a molecule embedded in a bath (reser-
voir) from an initial state to which it is excited is of interest [1–7]
for practical purposes in chemical physics as well as for funda-
mental reasons in statistical mechanics. We investigate this process 
here by representing the molecule as a harmonic oscillator of fre-
quency ! in interaction with phonons produced by the complex 
motions of the reservoir. Two cases are studied: weak linear inter-
action which involves the absorption or emission of single phonons 
[5,7], and strong linear interaction which, after the well-known 
polaronic transformation [8–10] is carried out to diagonalize the 
Hamiltonian partially in the standard manner and to perform a 
perturbation calculation in the remainder, introduces multiphonon 
processes in the transformed Hamiltonian. Our study uncovers no 
surprises in the first (single-phonon, weak coupling) case but note-
worthy features in the second (multiphonon arising from strong 
coupling). These features include nonmonotonic behavior in the 
relaxation both in the time evolution and the temperature depen-
dence of the rates of relaxation.

The tool that we use for our theoretical investigation is a gen-
eralized master equation (GME) derived by extending the method-
ology of Zwanzig [11] to include coarse-graining [12,13]. The form 
of the GME for P M , the probability that the molecular oscillator is 
in its Mth state at time t , is [13]
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1
κ

dP M

dt
=

t∫

0

ds
{
φ−(t − s) [(M + 1)P M+1(s) − M P M(s)]

− φ+(t − s) [(M + 1)P M(s) − M P M−1(s)]
}
, (1)

where κ is the relaxation rate, and the observable we focus on 
is the energy, E(t) = h̄! (⟨M⟩ + 1/2). The origin of the nonmono-
tonic relaxation is in the memories φ±(t) which we calculate here 
explicitly from the specified microscopic interaction.

2. Calculation of the bath correlation functions

We consider two forms of the Hamiltonian, signifying respec-
tively weak and strong interaction with the reservoir. Both inter-
actions involve a weak perturbative force exerted by the bath on 
the molecule as in the prescription of Landau and Teller [14] in-
corporated in the original relaxation theory [1]. In one case, a 
weighted sum of bath displacements is proportional to the force. 
In the other, the force is displacement-independent but the bath 
has an additional effect in that it modulates the frequency of the 
molecular oscillator. This effect is strong, i.e., not amenable to a 
perturbative treatment. Specifying these features of the interaction, 
while unnecessary in the original analysis of vibrational relaxation 
[1,14], is critical here because we derive a GME capable of a short-
time description with much more detail. The effect of the original 
Landau–Teller assumptions is recovered in appropriate limits. With 
the definition
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V B =
∑

q

gqh̄ωq

(
bq + b†

q

)
, (2)

the first case (weak coupling) has the Hamiltonian

H = h̄!
(

a†a + 1/2
)

+
∑

q

h̄ωq

(
b†

qbq + 1/2
)

+ V B

(
a + a†

)
. (3)

Here a’s describe the relaxing molecule, bq ’s describe bath phonons 
of frequency ωq and wavevector q, and gq ’s are the dimensionless 
coupling constants determining the interaction strength. Because 
the latter are taken to be small for this weak-coupling case, the 
calculational procedure can use a perturbation in orders of the 
third term of Eq. (3). The second case we consider (strong cou-
pling) is

H = h̄!
(

a†a + 1/2
)

+
∑

q

h̄ωq

(
b†

qbq + 1/2
)

+ V B a†a + u(a + a†). (4)

The c-number u which describes the constant force exerted by the 
reservoir on the molecular oscillator is weak but V B in this case is 
not because the coupling constants gq are taken to be large. The 
term proportional to V B cannot be treated in this second case per-
turbatively. The large interaction strength necessitates the standard 
polaronic transformation [8–10] from the bare operators a, b, to 
their dressed versions A, B . The transformation, as is well known 
[8–10], corresponds to a shift of the equilibrium position of the 
bath oscillators and converts Eq. (4) into

H =
(

h̄! −
∑

q

g2
q h̄ωq

)

A† A +
∑

q

h̄ωq

(
B†

q Bq + 1/2
)

+ u
[

Ae
∑

q gq

(
Bq−B†

q

)

+ A†e
− ∑

q gq

(
Bq−B†

q

)]
. (5)

The smallness of u makes the new interaction (third term) in 
Eq. (5) weak enough to justify perturbation. The transformed 
Hamiltonian is multiphonon in the bath (Bq , B†

q appear in the expo-
nent). One then obtains [13], after the usual initial random phase 
assumption [11] is made,

dP M(t)
dt

=
∑

N

(WMN ∗ P N − WN M ∗ P M) , (6)

where M , N denote the molecular energy states, and ∗ represents 
a convolution, i.e., a ∗ b =

∫ t
0 ds a(t − s)b(s). The separability of the 

interaction allows the memory functions to be given as:

WMN(t) = C
[

ei!MN tB(t) + e−i!MN tB∗(t)
]
, (7)

where C is (1/h̄2) 
[
δN+1,M(N + 1) + δN−1,M N

]
. Generally, !MN is 

the frequency defined by the energy difference between the sys-
tem energy levels M and N , and is here ±! if M and N are 
neighboring energy states. In a perturbative treatment involving 
powers of the interaction the memories vanish if M − N ≠ ±1.

Crucial in Eq. (7), the thermal bath correlation function B(t)
equals Tr

(
e−βH B V ieiH B t/h̄ V ie−iH B t/h̄

)
/Tr

(
e−βH B

)
, where H B is the 

Hamiltonian of the bath alone, V i is the interaction, and β = 1/kB T
with kB the Boltzmann constant. For the weak-coupling case, the 
interaction V i is V B in Eq. (2), and leads to

B(t) =
∑

q

g2
q h̄2ω2

q
[
coth

(
βh̄ωq/2

)
cosωqt + i sinωqt

]
. (8)

For the strong-coupling case, V i is not V B but replaced by the 
third term in Eq. (5), and leads to a result quite different from 
Eq. (8):

B(t) = u2e− ∑
q g2

q coth
(
βh̄ωq/2

)

× e
∑

q g2
q n(ωq)

(
eβh̄ωq eiωqt+e−iωqt

)

. (9)

To perform the summation over the reservoir modes q implicit in 
B(t), we use the simplification of optical phonons with peak fre-
quency ω0 and small dispersion σ ≪ ω0, and an average coupling 
constant g . We can then write Eqs. (8) and (9), respectively for the 
two interactions, as

B(t) = g2h̄2ω2
0 [coth (βh̄ω0/2) cosω0t + i sinω0t] f (t), (10a)

B(t) = u2e−g2 coth(βh̄ω0/2)(1−cos ω0t)eig2 sin ω0t f (t). (10b)

The function f (t) is determined primarily via a Fourier transform 
applied to the shape of the phonon band in Eq. (8), but also by 
other disordered sources not taken explicitly into account in the 
statement of the Hamiltonian. For Eq. (9), the introduction of dis-
ordered sources is unavoidable [9] since linear interactions cannot 
broaden zero-phonon lines [15]. The procedure we follow [8,9] has 
been given earlier and discussed [9,16] and is compatible with the 
derivation of a GME in the presence of disorder [17]. The most 
convenient representation of f (t) is the exponential e−αt ; an alter-
native, valid for the weak-coupling case, is a Gaussian with width 
σ . We take the exponential in the following. This leads to memo-
ries

κφ±(t) = 2g2ω2
0

[
coth (βh̄ω0/2) cosω0t cos!t

∓ sinω0t sin!t
]

e−αt, (11a)

κφ±(t) = 2(u/h̄)2e−g2 coth(βh̄ω0/2)(1−cos ω0t)

× cos
[

g2 sin (ω0t) ± !t
]

e−αt, (11b)

for the two cases, respectively.

3. Noteworthy features in the relaxation

An efficient way of investigating the molecular relaxation pro-
cess is to follow the recent Kenkre–Chase generalization [13] of 
the Bethe–Teller result [18] for the vibrational energy E(t) of the 
molecule, which is the first moment of the probabilities in the 
GME, Eq. (6),

E(t) = E(0)η(t) + Eth

t∫

0

ds ξ(t − s) [1 − η(s)] , (12)

using the φ±(t) that we have calculated here from specified Hamil-
tonians. Here E(0) is the initial energy of the system, Eth =
(h̄!/2) coth (βh̄!/2) is its thermal value, and η(t) and ξ(t) have, 
as their respective transforms (ϵ is the Laplace variable and tildes 
denote transforms),

η̃(ϵ) = 1

ϵ + κφ̃D(ϵ)
, ξ̃(ϵ) = φ̃S(ϵ)

φ̃D(ϵ)
tanh

(
βh̄!

2

)
. (13)

Here, φS(t) and φD(t) are, respectively, the sum and difference of 
φ−(t) and φ+(t). Thus, φν = φ− ± φ+ . In the strong interaction 
regime, the microscopic memories have the form
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Fig. 1. Nonmonotonic temperature dependence of the molecular energy for the 
strong-coupling case shown via the time evolution of the energy E(t) scaled to 
its thermal value Eth . Here the molecular frequency ! equals the peak frequency 
of the bath phonons ω0, g = 2, and α/! = 0.01. We plot E(t) for varying T /T0
where T0 = h̄ω0/kB (see legend). A nonmonotonic T -dependence is observed as T
increases, first a rise and then a drop (see arrows). The inset shows the difference 
between the incoherent limit (Montroll–Shuler, see text) (dash–dot line) and our 
GME predictions (solid line) for one representative case, T /T0 = 1.

κφν(t) = (2u/h̄)2e−g2 coth(βh̄ω0/2)(1−cos ω0t)

× -
(

g2 sinω0t
)

- (!t) e−αt, (14)

where if ν = S the function -(x) is cos(x) and if ν = D it is sin(x). 
In the weak interaction case,

κφν(t) = 2g2ω2
0 ϒ(ω0)- (ω0t)- (!t) e−αt, (15)

where the function ϒ(ω0) is coth (βh̄ω0/2) if ν = S and 1 if ν = D .
The time-dependent energy in Eq. (12), with the substitution 

of Eq. (14), shows striking behavior displayed in Fig. 1 for the 
strong-coupling (multiphonon) interaction. As the temperature is 
increased, nonmonotonic behavior in the energy is exhibited for 
different T intervals. As the arrows show, the peaks of the time-
dependent E(t) increase as T increases at first, but decrease as 
T increases further. In the inset in Fig. 1, for one illustrative T , 
we display the oscillatory E(t) our GME predicts along with the 
non-oscillatory evolution [1,18] predicted by the incoherent Mas-
ter equation. That difference between the exponential rise from the 
incoherence-based treatment of ref. [1] and the oscillations from 
the coherent GME treatment of ref. [13] is not our focus. What we 
stress here is, rather, represented by the reversal of the arrow di-
rections in the main Fig. 1.

No such nonmonotonicity effect is seen for the weak-interaction 
case (with the H of Eq. (3) or the B(t) of Eq. (10a)). This is clear 
in Fig. 2 which is the counterpart of Fig. 1 for the weak-coupling 
case. The peaks in the main figure show only a monotonic varia-
tion as T is increased.

To make the effect additionally clear, we show Fig. 3 in which 
we plot the rate of relaxation κ obtained by integrating the expres-
sions in Eqs. (11) from t = 0 to ∞. The strong-coupling case (solid 
line) from Eq. (11b) exhibits nonmonotonicity in T . Whether the 
rate increases or decreases with T is determined by the T -interval 
in which observations are made. The weak-coupling case (dashed 
line) by contrast shows a monotonic increase. We note in passing 
that the expressions for the relaxation rate that we have derived 
in the present paper, while similar to ones encountered in the the-
ory of mobility of photo-injected holes in naphthalene [16], differ 
in some essential features. While the phonons analyzed in ref. [16]
only modulate the energy of the moving quasi-particle (charge car-
rier), here they help the quasi-particle (the vibrational excitation) 
bridge the energy gap between adjacent states in addition to mod-
ulating the energy.

Fig. 2. Absence of nonmonotonicity in the time evolution of the energy in the weak-
coupling case. Here g = 0.02, but ω0 = ! and α/! = 0.01 as in Fig. 1. As T is 
increased, the energy rises above the incoherent limit value, with oscillations decay-
ing faster to Eth . The frequency of oscillation of E(t) appears to remain unchanged. 
The amplitude increases monotonically with increasing T for all T ’s considered in 
the plot.

Fig. 3. Temperature dependence of the relaxation rate κ(T ) plotted with respect to 
T in units of T0. In the strong-coupling case (solid line) a nonmonotonic T de-
pendence is observed: the rate rises with increasing T and then decreases as T
increases further. The behavior for the weak coupling case (dashed line) is, by con-
trast, monotonic. Parameter values are as in the main Figs. 1 and 2, respectively.

Eq. (12) in its incoherent (Montroll–Shuler) form can be written 
as

E(t) − Eth

E(0) − Eth
= e

−κ
(

1−e−βh̄!
)

t
. (16)

Although our generalization in ref. [13] reflected in Eq. (12) results 
in a non-exponential t-dependence of the left hand side of Eq. (16), 
its Laplace transform can be always expressed as

1

ϵ + ζ̃ (ϵ)

where ζ represents a memory decay rate governing the relaxation 
behavior of the oscillator. We find that a plot of ζ̃ (0) =

∫ ∞
0 ζ(t)dt , 

which corresponds to, but is a non-Markoffian generalization of, 
the incoherent rate κ

(
1 − e−βh̄!

)
, shows multiple oscillations with 

increasing temperature. We do not display these oscillations graph-
ically here; they and details of the underlying analysis may be 
found elsewhere [19].

Another interesting feature that we have observed here is the 
periodic kinks observed along the main oscillation which dissi-
pate as time progresses (see Fig. 4). These kinks are related to 
revivals known in spin-boson [20] systems and can be said to arise 



V.M. Kenkre, A.A. Ierides / Physics Letters A 382 (2018) 1460–1464 1463

Fig. 4. Kinks associated with microscopic revivals seen clearly at very low T in the 
time evolution E(t) scaled to its thermal value Eth . Parameters are as in Fig. 1. 
The kinks are seen superimposed on the oscillatory relaxation of the energy, disap-
pearing as time progresses. For comparison we show the nonoscillatory exponential 
rise of E(t) to its thermal (Bethe–Teller) value predicted by the old Montroll–Shuler 
analysis. This is precisely Eq. (16) and corresponds to a delta-function memory in 
the GME, Eq. (6). Our predicted curve with kinks also saturates to the same thermal 
value (not visible in the plot).

from the competition between the periods inside each of the two 
cosines in the memories in Eq. (11b).

Finally, we mention a “half-Markoffian” approximation [17,21]
we have developed [19] which is able to describe, with excellent 
accuracy both the short-time and the long-time evolution of the 
energy E(t) but not the intermediate oscillations that only the con-
volutions of Eq. (12) can give. We do not discuss this analysis here 
but display the interpolation formula we have obtained,

E(t) = h̄!/2 + [E(0) − h̄!/2] e−
∫ t

0 ID (t′)dt′

+ h̄!

t∫

0

dt′ I+(t′)e−
∫ t

t′ ID (s)ds, (17)

where Iν(t) =
∫ t

0 κφν(s)ds. We also provide its results graphically 
in Fig. 5. Our interpolation formula yields the approach of the 
molecular energy to its thermal equilibrium Eth perfectly at long 
times (as does the exact solution at longer times although this is 
not apparent from the figure). Fig. 5 shows that our formula repro-
duces faithfully the kinks at very short times as well.

4. Conclusions

Of several distinct motivations for our theory (including the 
study of the approach to thermal equilibrium of complex systems), 
one is (see the abstract) experiments [5,7] on what may be termed 
inverted T -dependence of relaxation rates (e.g., on W(CO)6). The 
phenomenon is interesting because it appears counterintuitive. Our 
present analysis provides one possibility as its source: polaronic 
processes arising from strong coupling to phonons. This source 
is quite unrelated to that invoked by other authors earlier: the 
T -dependence of the density of states of liquid phonons of the 
solvent. The source we suggest here as an alternative, is similar 
to that shown [16] to give rise to the observed T -dependence 
of the mobility of photo-injected holes in aromatic hydrocarbon 
crystals [22]. It stems from oppositely trending effects of virtual 
phonons and appears to be at least as natural and physical as the 
T -dependence of the liquid phonon density of states of solvents.

The focus in this Letter being only on the qualitative features 
of the nonmonotonicity phenomenon we have described, for this 
work we have neither sought specific molecules in given environ-
ments nor examined quantitative values of the coupling constant, 

Fig. 5. Excellent agreement at both short and long times (but not for intermediate 
times) of our “half-Markoffian” approximation leading to the interpolation formula.

molecular frequency and bath parameters. It is our intention to ex-
tend the analysis in those directions as well as to employ more re-
alistic models involving several vibrations in addition to a phonon 
band [5,7]. Our predicted graphs here are shown in t expressed in 
units of 1/! and T expressed in units of h̄ω0/kB . We have con-
sidered extreme values of the interaction strength, g = 0.02 and 2, 
respectively. Features we see in Figs. 1–3 appear to suggest that 
the effects predicted should be measurable on these scales. By 
changing various parameters such as α within reasonable limits, 
we have assured ourselves that the qualitative aspects of our pre-
dictions remain valid. Inclusion of further numerical detail, while 
unnecessary at this stage, will be straightforward when explicit ex-
periments are under investigation.1
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