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a b s t r a c t

The approach to thermal equilibrium of each of three simple quantum systems in inter-
action with a reservoir is analyzed by calculating the time evolution of an observable
appropriate for each system. Two types of interaction with the reservoir are considered:
a single-phonon modulation of the interaction matrix element and a multiphonon in-
teraction arising from a polaronic transformation for a given single-phonon, but strong,
modulation of energy or frequency. The methodology employed is a recent formalism
based on a coarse-grained generalized master equation. Interesting results are obtained
for the multiphonon case including a nonmonotonic dependence of the time-dependent
observables in the multiphonon system as the temperature is varied. Such a result does
not appear in the single-phonon case, i.e., for weak coupling. In addition to contributing
towards the understanding of the detail in the approach to thermal equilibrium, the
analysis has practical applications to the vibrational relaxation of molecules embedded in
phonon baths and to the transport of charge in crystals subjected to electric fields strong
enough to lead to the formation of Stark ladders.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and tools of this theoretical investigation

The purpose of this paper is to analyze the process of the approach to equilibrium of three simple but typical quantum
systems in interaction with a specified thermal reservoir and to describe interesting features that arise when the interaction
is strong. Approach to equilibrium is one of the subjects universally considered central in statistical mechanics [1–5] and
worthy of careful investigation. The three systems considered for analysis in the present paper are a nondegenerate quantum
dimer [6] which can exist in one of two energetically inequivalent states, differing in energy by 2�; a charged particle under
the action of an applied strong electric field [7–10] E, moving across a 1-dimensional crystal of lattice constant, a; and a
harmonic oscillator of frequency ⌦ representing a molecule relaxing vibrationally [11,12] as a result of its interaction with
the reservoir [13]. The reservoir is a set of bosons, for instance phonons, of average frequency !0 and dispersion � . The
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dimensionless coupling constant g determines the strength of the interaction between system and reservoir and is taken to
lie between 0.02 and 2, depending on the coupling strength regime being studied, as described below.

The time-dependent observables calculated in order to study the approach to equilibrium are, in the first case, the
occupation probability difference p(t) = P1(t) � P2(t) of the dimer states which, from an initial value of 1 at the start,
settles into the Boltzmann ratio, � tanh (��), where (and henceforth) � = 1/kBT with kB the Boltzmann constant and T
the temperature; in the second case, the velocity v(t) of the electric charge q, as it speeds in the direction of the applied
field; and in the third case, the average energy of the relaxing molecule E(t) = h̄⌦ (hMi + 1/2), where hMi is the average
number of excitations in the oscillator. The parameters involved in all three cases are, in addition to the temperature T and
the coupling constant g , the following: the dispersion of the bath phonons, � ⌧ !0, and the characteristic energy of each
system, 2� for the dimer, E = qEa for the moving charge, and h̄⌦ for the harmonic oscillator.

The tools that we use for our theoretical investigation are based on generalized master equations (GMEs) derived by
extending the methodology of Zwanzig [14–16] to include coarse-graining [10,17,18]. We refer the reader to Refs. [6,10,19]
for the derivation of the form of these GMEs, but display them immediately below for use in our subsequent calculations in
the present paper.

As stated above, each of the three systems is characterized by a single energy. It is the difference 2� between the two
dimer state energies in the first system, and the difference between nearest neighboring states for the other systems, E for
the second and h̄⌦ for the third. For all three systems, the reservoir contributes to the respective GME an energetically
‘‘downward’’ memory ��(t) and an ‘‘upward’’ memory �+(t), decided solely by the reservoir. The t = 0 to 1 time integrals
of thesememories are in a detailed balance ratio to each other,

R1
0 ds��(s)/

R1
0 ds�+(s) = e�h̄⌦ , the characteristic frequency

of the specified system being represented by ⌦ .
For the dimer, the occupation probabilities P1(t) and P2(t) of the two states obey

dP1(t)
dt

= F21

Z t

0
ds [�+(t � s)P2(s) � ��(t � s)P1(s)] , (1a)

dP2(t)
dt

= F21

Z t

0
ds [��(t � s)P1(s) � �+(t � s)P2(s)] , (1b)

where F21 is the relaxation rate corresponding to the energetically downward interstate transition. Here, 1 denotes the higher
energetic state, and F12/F21 = exp (�2�/kBT ), satisfy the detailed balance condition. The dynamics of the charge under the
influence of a strong electric field are governed by the GME

dPM (t)
dt

= ~

Z t

0
ds [��(t � s)PM+1(s) + �+(t � s)PM�1(s)]

� ~

Z t

0
ds [��(t � s) + �+(t � s)] PM (s), (2)

where ~ is the charged particle relaxation rate, similarly the transition rate in the direction of the external field.1 For the
relaxing molecule represented by a harmonic oscillator, the occupation probability of the oscillator state M is governed by
the GME described by

dPM (t)
dt

= 

Z t

0
ds
n

��(t � s) [(M + 1)PM+1(s) � MPM (s)]

� �+(t � s) [(M + 1)PM (s) � MPM�1(s)]
o

, (3)

where  is the downward transition rate which we will call the oscillator relaxation rate. The level spectrum is discrete in
all cases, being finite (spanning only two states) in the first, infinite in the second (M ’s are integers from �1 to 1), and
semi-infinite (M ’s are positive integers extending from 0 to 1) in the third system, respectively.

The GMEs in Eqs. (1)–(3), although slightly different in form as a result of the characteristics of each system, all have in
themmemories �±(t) which are identical because we treat identical baths influencing the systems. The difference between
the GMEs arises in the termsmultiplying the �(t)’s due to the respective system properties. Themultiplicative terms are the
corresponding relaxation rates, F21 for the dimer, ~ for the charged particle, and  (as well as site-index dependent terms)
for the harmonic oscillator.

The present paper is organized as follows. In Section 2, brief comments are made about the form of the interaction
analyzed and bath correlation functions common for all three systems are calculated along with expressions for the
memories �±(t). The discussion is presented in the detailed context of the third system, the relaxing molecule, and results
are used for all three cases without repeating the detail. In the next three sections, the relevant observable for each system
is analyzed and the results are discussed. Concluding remarks are presented in the last section.

1 In writing Eq. (2) we have corrected a minor sign error in Ref. [10].
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2. Choice of interaction, calculation of the bath correlation function, and the nonmonotonicity effect

The interaction of the vibrating molecule with the bath that led to the well-known Montroll–Shuler relaxation equa-
tion [11] in chemical physics [12,20–26] was based on Landau–Teller rates [13]. For the sake of simplicity these assumed the
interaction to be linear in the molecule displacement. Little more had to be specified in such a derivation because rates in
the incoherent Master equation was all that was required. Our present interest, however, lies in a more detailed description
that is capable of describing stages of the approach to equilibrium that are earlier in time as well and can give rise to effects
like oscillations that occur during decoherence of the initial state. The memory functions required for this purpose demand
more information about the basic system–bath interaction. Therefore, while we maintain the linear dependence feature of
the Landau–Teller rates, we specify details of the bath observables in the interaction. Two types of interaction appear to us
to be of interest and relevance. Both are compatible with the earlier analysis in the literature [13]. One of them is associated
with weak coupling and single-phonon transitions while the other is best described as arising from strong coupling with
single phonons leading, after a transformation, to multiphonon transitions. Our primary focus is in the latter because of
its interesting consequences. We specify the two interactions in the Hamiltonian below. We comment on the noteworthy
features of the approach to equilibrium that arise in the strong, multiphonon interaction case and show how they do not
arise in the other, weak, single-phonon case.

2.1. The interaction Hamiltonians

Although the formalism can be developed for a completely general Hamiltonian, we will consider here separable cases
of the form [12,27]

H = HS + HB +
X

j

VS,jVB,j, (4)

where HS is the system Hamiltonian and VS,j is the jth system contribution to the system–bath interaction, respectively.
Each of these is different for each of the three systems. On the other hand HB and VB,j, the bath Hamiltonian and jth
bath-contributed interaction, respectively, are considered identical for all of the three systems studied. In order to use
the perturbative tools mentioned in Section 1, the third term in Eq. (4) has to be weak relative to the other terms. Weak
interactions do satisfy the requirements of the situation that, as a result of them, the system must eventually settle in a
Boltzmann-weighted and random-phased density matrix in the eigenstates of HS and HB. However, interesting results, as
we shall show in the sequel, only emerge when the interaction is strong. To resolve this conundrum, we will consider strong
interactions, a part of which can be taken into account exactly through a transformation resulting in a counterpart of Eq.
(4). The interactions left over after the transformation will be weak and amenable to a perturbative treatment. We will also
compare, in each case, the results of the strong interaction with those of the original weak interaction that does not produce
interesting results.

Let us define the operators

HB =
X

q

h̄!q

✓

b†
qbq + 1

2

◆

, (5a)

VB =
X

q

gqh̄!q
�

bq + b†
q

�

, (5b)

where the bq’s describe bath bosons, for instance phonons, of frequency !q and wavevector q and the gq’s are the
dimensionless coupling constants determining the interaction strength. In the first instance, we take the unperturbed bath
Hamiltonian HB to equal HB and assume a single bath contribution j in the interaction, VB,j = VB, weak enough so that the
calculational procedure can use a perturbation in orders of the third termof Eq. (4). The systemoperators for this first system,
the vibrating molecule, are

HS = h̄⌦
✓

a†a + 1
2

◆

, (6a)

VS = a + a†, (6b)

where ⌦ is the oscillator frequency and a + a† is essentially the displacement of the molecular oscillator.
In order to analyze strong coupling, we begin by considering, as our second case, the sameHS as in Eq. (6a) and the same

HB = HB as in Eq. (5a), but VBa†a + u(a + a†) as the system–bath interaction. The c-number uwhich describes the constant
force exerted by the bath on the molecular oscillator is weak but VB in this case is not because the coupling constants gq are
taken to be large. The term proportional to VB cannot be treated in this second case perturbatively. In order to take as much
of its effects into account exactly, we perform the standard polaronic transformation [20–24,28] taking the Hamiltonian
from a representation in terms of the bare operators a, b, to a representation in terms of their dressed versions A, B. The
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transformation, as is well known [20–24,28], corresponds to a shift of the equilibrium position of the bath oscillators and
allows the Hamiltonian to be written as

H =
 

h̄⌦ �
X

q

g2
q h̄!q

!

A†A +
X

q

h̄!q

✓

B†
qBq + 1

2

◆

+ u


Ae
P

q gq
⇣

Bq�B†q
⌘

+ A†e�Pq gq
⇣

Bq�B†q
⌘

�

. (7)

Here, the dressed operators A and B are given by A = ae�Pqgq
⇣

Bq�B†q
⌘

and Bq = bq + gqa†a. We see that Eq. (7) is precisely
of the form of Eq. (4) withHS =

�

h̄⌦ �P

qg
2
q h̄!q

�

A†A andHB = P

qh̄!q

⇣

B†
qBq + 1/2

⌘

. The interaction term in the second
line of Eq. (7) is amenable to a perturbative treatment because of the assumed smallness of the c-number u. The presence
of the so-called phonon clouds (the exponentials of the dressed bath operators Bq, B

†
q) forces the transformed Hamiltonian

of Eq. (7) to have amultiphonon nature although the original Hamiltonian before the transformation has only single-phonon
interactions.

2.2. Bath correlation functions

The GMEs (1)–(3) that govern the evolution of the three systems can be unified in the form

dPM (t)
dt

=
X

N

Z t

0
ds [WMN (t � s)PN (s) � WNM (t � s)PM (s)] (8)

where the M and N refer to the system states. Expressions for the W(t)’s are available in previous work in terms of the
system,M and N , and bath,m and n, states as

WMN (t) = 2
h̄2

X

m,n

e��✏n

Z |hM,m|V |N, ni|2 cos [(!mn + ⌦MN )t] , (9a)

WNM (t) = 2
h̄2

X

m,n

e��✏n

Z |hM,m|V |N, ni|2 cos [(!mn � ⌦MN )t] . (9b)

found for instance in Eqs. (A.3) and (A.4) of Ref. [10]. Themethod to arrive at Eqs. (8) and (9) employs the Zwanzig projection
technique [14–16] generalized via coarse-graining [10,17,18]. Here ⌦MN = (EM � EN )/h̄ and !mn = (✏m � ✏n)/h̄ are the
frequencies corresponding to the energy differences between the system and bath states, respectively, Z = P

ne
��✏n is the

bath partition function, and V is the system–bath interaction.
While V may be generally of arbitrary form, we have taken it here, as explained in the context of Eq. (4), as a sum of

products of independently contributing bath and system components. Showing expressions only for a single j for simplicity,
we see that

WMN (t) = 1
h̄2 |hM|VS |Ni|2

X

m,n

e��✏n

Z |hm|VB|ni|2
⇥

ei(!mn+⌦MN )t + e�i(!mn+⌦MN )t⇤ , (10a)

WNM (t) = 1
h̄2 |hM|VS |Ni|2

X

m,n

e��✏n

Z |hm|VB|ni|2
⇥

ei(!mn�⌦MN )t + e�i(!mn�⌦MN )t⇤ . (10b)

Distributing the exponents in Eqs. (10) so that bath quantities are absorbed into factors separated from the systemquantities,
we obtain

WMN (t) = 1
h̄2 |hM|VS |Ni|2

⇥

ei⌦MN tB(t) + e�i⌦MN tB⇤(t)
⇤

, (11a)

WNM (t) = 1
h̄2 |hM|VS |Ni|2

⇥

e�i⌦MN tB(t) + ei⌦MN tB⇤(t)
⇤

. (11b)

The fact that Eq. (11) presents thememories as a direct combination of, on one hand the system detail in thematrix elements
of VS and the difference ⌦MN , and on the other the bath correlation function B(t), a property entirely of the bath given by

B(t) =
X

m,n

e��✏n

Z hm|VB|nihn|V †
B (t)|mi =

Tr
⇣

e��HBVBeiHB t/h̄V
†
B e�iHB t/h̄

⌘

Tr
�

e��HB
� , (12)

is calculationally significant. It stems from the reasonable, normally made, supposition that the bath always remains in its
thermal equilibrium even as it influences the time evolution of the system. For our three systems, M and N differ only by
1 such that only transitions between nearest neighbor states can occur. Their energy difference is ±h̄⌦ , depending on the
respective transition direction, ⌦ being the system specific characteristic frequency.
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Explicit calculation from Eq. (5) gives, for the weak-coupling case,

B(t) =
X

q

g2
q h̄

2!2
q



coth
✓

�h̄!q

2

◆

cos!qt + i sin!qt
�

. (13)

The evaluation is more involved for the strong-coupling case of Eq. (7), but follows standard polaronic manipulations
[20–24,28,29] and yields

B(t) = u2e�Pq g2q coth
⇣

�h̄!q
2

⌘

e
1
2
P

q g2q csch
⇣

�h̄!q
2

⌘

 

e
�h̄!q

2 ei!qt+e�
�h̄!q

2 e�i!qt

!

. (14)

In order to perform the summation over the reservoir modes q implicit in B(t) in Eqs. (13) and (14), let us use the simpli-
fication of optical phonons with a peak frequency !0 and small dispersion � ⌧ !0, with an average coupling constant g . If
the density of states considered is that of a Gaussian peaked at !0 and width � , Eqs. (13) and (14) (in the continuum limit)
have the forms

B(t) = g2h̄2!2
0e

� �2t2
2

⇥
(

coth
✓

�h̄!0

2

◆✓

1 + � 2

!2
0

� � 4t2

!2
0

◆

cos (!0t) � 2
� 2

!0
t sin (!0t)

�

+ i
✓

1 + � 2

!2
0

� � 4t2

!2
0

◆

sin (!0t) + 2
� 2

!0
t cos (!0t)

�

)

, (15)

in the weak-coupling case [30] and

B(t) = u2e
�g2 coth

⇣

�h̄!0
2

⌘

 

1�e�
�2t2
2 cos!0t

!

eig
2e�

�2t2
2 sin!0t , (16)

in the strong-coupling case [31], respectively.
It is expected that the memory functions resulting from the use of Eqs. (15) and (16) would decay to zero at long times

due to the interaction of the system with the thermal reservoir. However, the linear interactions considered in this study
cannot broaden the zero-phonon lines present in optical spectra [28,32], and the memories produced never quite decay to
zero, oscillating about a nonzero value determined by themicroscopically specified parameters. The solution to this problem,
discussed in the literature earlier [28,29], lies in the unavoidable introduction of sources of disorder not taken explicitly into
account in the microscopic description of the Hamiltonian [20–22,28]. This is done through the incorporation of an extra
decay factor introduced into the memories [29]. In all three systems, the bath correlation functions Eqs. (13) and (14) may
be thus considered as being calculated for a single mode of vibrational mode and multiplied by a time-dependent factor
f (t) which takes into account both the phonon spectral line shape and sources of disorder mentioned above. This allows for
Eqs. (15) and (16) to be represented as

B(t) = g2h̄2!2
0



coth
✓

�h̄!0

2

◆

cos (!0t) + i sin (!0t)
�

f (t), (17)

and

B(t) = u2e�g2 coth
⇣

�h̄!0
2

⌘

(1�cos!0t)eig
2 sin!0t f (t), (18)

respectively.

2.3. Nonmonotonic temperature dependence of the rates

Themost convenient representation of f (t) is the exponential e�↵t which is compatible with the derivation of the GME in
the presence of disorder [33,34]. It represents quite well the time behavior of all three system observables as our numerical
computations have shown, and the corresponding memories in each coupling regime, have the forms

� �±(t) = 2g2!2
0



coth
✓

�h̄!0

2

◆

cos (!0t) cos (⌦t) ⌥ sin (!0t) sin (⌦t)
�

e�↵t (19a)

for the weak (single-phonon) interaction, and

� �±(t) = 2
u2

h̄2 e
�g2 coth

⇣

�h̄!0
2

⌘

(1�cos!0t) cos
⇥

g2 sin (!0t) ± ⌦t
⇤

e�↵t , (19b)

for the strong (multiphonon) interaction. Here ⌦ and � may be replaced, respectively, by the characteristic frequency and
relaxation rate of whichever system we are analyzing. The � ’s are found by taking the Fourier transform of the specified
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Fig. 1. Temperature dependence of the relaxation rates � for both weak and strong interactions. T is plotted in units of T0 = h̄!0/kB . The system, as
described in the text, is a harmonic oscillator of characteristic frequency ⌦ in strong (g = 2) and weak (g = 0.02) interaction with optical phonons of
peak frequency !0 = ⌦ + ↵/2 and narrow dispersion ↵/⌦ = 0.01. A monotonic increase of the rate with increasing T is observed for the weak-coupling
(single-phonon) case. In the strong-coupling (multiphonon) case, the rate exhibits distinctive nonmonotonic behavior with increasing T , making the T
interval over which the rate is observed of particular importance.

memories in Eqs. (19) and are

� = 2
u2

h̄2 e
�g2 coth

⇣

�h̄!0
2

⌘ 1
X

`=�1
I`
⇥

2g2n (!0)
⇤

1
X

k=0

g2k

k!
↵

↵2 + [(k + `)!0 � ⌦]2
(20)

in the multiphonon (strong-coupling) interaction case, and

� = 2g2!2
0

⇢

[n (!0) + 1]
↵

↵2 + (!0 � ⌦)2
+ n (!0)

↵

↵2 + (!0 + ⌦)2

�

(21)

in the single-phonon (weak-coupling) interaction case, respectively.While the case ofweak interactionwith the bath (single-
phonon interaction) results in an Arrhenius behavior wherein the rate is activated and increases with increasing T , in the
case of a strong-coupling (multiphonon) interaction, a nonmonotonic behavior of the rate is observed. Thus, whether the
relaxation rate increases or decreases with T is determined by what T -interval is used for the measurement (see Fig. 1).

The rest of the investigation in this paper consists of (i) the substitution of the two bath correlation functions, one for the
single-phonon interaction case, Eq. (15), and the other for themultiphonon case, Eq. (16), into theW (t) function prescriptions
in Eqs. (11) to obtain the corresponding upward anddownwardmemories�±(t) for each system, (ii) the use of these common
�’s and the separate |hM|VS |Ni|2 for each system in the probability equations Eqs. (1)–(3) and their observable consequences,
p(t) for the dimer, v(t) for the charged particle, and E(t) for the harmonic oscillator, and (iii) examination of the behavior of
the three observables for the three systems with respect to the variation of microscopic parameters.

3. Application of the Theory I: the simple nonresonant dimer

As perhaps the simplest possible case for our study of the approach to equilibrium, we investigate in this section the
nonresonant dimerwith energy difference 2�. Its spectrum is not infinite as that of the charged particle (M = �1, . . . , 1)
or semi-infinite as that of the vibrating molecule (M = 0, . . . , 1), but consists of only two states (M = 1, 2). One of the
reasons for this study is that the dimer serves as a tutorial system which exhibits the principal features of the other two
systems. Another reason has to dowith the equienergetic spectrum of the harmonic oscillator that may produce undesirable
harmonics in predicted signals. The energy difference between the two states of the anharmonic oscillator that are involved
in the process being probed is often large. In such cases the contribution to relaxation from states other than two to turn
out to be negligible. It is then preferable, even perhaps advisable [35], to model relaxation experiments via anharmonic
oscillators and therefore via the nonresonant dimer.

An earlier treatment [6] of the nonresonant dimer results in Eq. (1) whose solution may be written as

p(t) = p(0)µ(t) +
Z t

0
ds⌅ (t � s) [µ (s) � 1] , (22)
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Fig. 2. Time evolution of the occupation probability difference plotted as a function of time t in units of h̄/2� for the nondegenerate dimer in strong
interaction (g = 2) with optical phonons of peak frequency !0 = 2�/h̄ and narrow dispersion h̄↵/2� = 0.01 for various T : values for 2�/kBT are shown
in the legend. Initial revival oscillations damp out as T is increased, decaying to silent runs. Striking is the nonmonotonic effect: as T increases, the time
evolution curvemoves down and thenmoves up (as the arrows show) as T is increased further. One also observes a decrease in the amplitude of the periodic
revivals as T increases.

for the difference in the occupation probability p(t) = P1(t) � P2(t), where ⌅ (t) and µ(t) are the Laplace inverses of

⌅̃ (✏) =
e�D(✏)
e�S(✏)

and µ̃(✏) = 1
✏ + F21e�S(✏)

, (23)

respectively. At long times, p(t) approaches � tanh (�/kBT ) as expected from detailed balance. Here �S and �D are the sum
and difference2 of the microscopic memories �, respectively, i.e., �⌫ = �� ± �+, where the ‘+’ (sum) corresponds to ⌫ = S
and the ‘�’ (difference) to ⌫ = D.

On applying the microscopic memories we have calculated in the present paper in Section 2, the sum and difference of
the memories in the multiphonon (strong-coupling) case turn out to have the form

F21�⌫(t) = 4
u2

h̄2 e
�g2 coth(�h̄!0/2)(1�cos!0t)⇤

�

g2 sin!0t
�

⇤ (2�t/h̄) e�↵t , (24)

where if ⌫ = S (sum), the function ⇤(x) is cos(x) and if ⌫ = D (difference) is sin(x). The corresponding Laplace transform of
Eq. (24) is

F21�̃⌫(✏) = 4
u2

h̄2 e
�g2 coth(�h̄!0/2)

⇥
1
X

`=�1

I`
h

g2csch
⇣

�h̄!0
2

⌘i

e`
�h̄!0

2 (✏ + ↵) �` (✏)
⇥

(✏ + ↵)2 + (`!0 + 2�/h̄)2
⇤ ⇥

(✏ + ↵)2 + (`!0 � 2�/h̄)2
⇤ , (25)

where if ⌫ = S, the function �`(✏) is (2�/h̄)2 + `2!2
0 + (✏ + ↵)2 and if ⌫ = D it is 2`!0(2�/h̄). The passage from Eqs. (24) to

(25) uses an expansion of the exponential of the trigonometric function into an infinite series of modified Bessel functions.
Interesting features appear in the time evolution of p(t) in the multiphonon (strong-coupling) interaction case. In Fig. 2,

p(t) is plotted with respect to time in units of h̄/2� for the case of strong coupling with a bath of optical phonons of peak
frequency !0 = 2�/h̄. We notice both the nonmonotonicity effect brought about by the associated relaxation rate F21
calculated in Eq. (20) with h̄⌦ = 2� and revivals known to exist in spin-boson systems [36] at short times. At lower
temperatures oscillations, silent runs, and revivals are evident, as discussed in spin-boson investigations [36]. As T is
increased, the revivals prevalent at vanishing T begin to dissipate with increasing T . The nonmonotonicity effect present
is depicted as the arrows show in Fig. 2: p(t) decreases as T increases from 1/5 to 1/3 in units of 2�/kB, and begins to
increase as T increases further from 1/3 to 1/2 in those units.

In the case of the single-phonon (weak-coupling) interaction, the bath contribution to the interaction includes a shift
created by the intersite matrix element u such that the bath contribution to the interaction in Eq. (5b) is written as

VB = u +
X

q

gqh̄!q
�

bq + b†
q

�

. (26)

2 The notation �D(t) instead of ��(t) is used for the memory difference unlike in Eq. (9) of Ref. [10].
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Here u is also treated perturbatively to yield a bath correlation function of the form

B(t) = u2 + (g2/2)h̄2!2
0n(!0)

�

e�h̄!0ei!0t + e�i!0t
�

(27)

and memories with an incorporated disorder term (e�↵t ) of the form

F21�±(t) = 2
u2

h̄2 cos (2�t/h̄) e�↵t

+ g2!2
0n(!0)

⇥

e�h̄!0 cos (2�t/h̄ ± !0t) + cos (2�t/h̄ ⌥ !0t)
⇤

e�↵t . (28)

The sum and difference of the memories in Eqs. (28) and their Laplace transforms have the forms

F21�⌫(t) = 4
u2

h̄2 �⌫,S cos (2�t/h̄) e�↵t + 2g2!2
0 ⌥ (!0)⇤ (!0t) ⇤ (2�t/h̄) e�↵t , (29)

and

F21�̃⌫(✏) = 4u2�⌫,S
✏ + ↵

h̄2(✏ + ↵)2 + 4�2

+ 2g2!2
0 ⌥ (!0)(✏ + ↵)�1(✏)

⇥

(✏ + ↵)2 + (!0 + 2�/h̄)2
⇤ ⇥

(✏ + ↵)2 + (!0 � 2�/h̄)2
⇤ , (30)

respectively, where the functions ⌥ (x) and �⌫,S are coth (�h̄x/2) and 1 if ⌫ = S (sum), respectively, and 1 and 0 if ⌫ = D
(difference) and ⇤(x) and �`(x) are as for Eqs. (24) and (25), respectively. We calculate the behavior of the occupation
probability in one of the two extreme time limits by following the Tiwari–Kenkre analysis [6]. In the short-time limit,
!0t ⌧ 1, the difference in the memories approaches 0 while the sum may be approximated to

F21�S(t) ⇡ 4
�

u2/h̄2� cos (2�t/h̄) + 2g2!2
0 coth (�h̄!0/2) cos (2�t/h̄) . (31)

The resulting short-time behavior of the occupation probability difference is both a temperature- and interaction-dependent
oscillation

p(t ! 0) = hpi + (1 � hpi) cos
⇣

2�t/h̄
p

hpi
⌘

, (32)

around the average value hpi given by

hpi = �2

�2 + u2 + (gh̄!0)2

2 coth (�h̄!0/2)
(33)

If there is no interaction with the bath, i.e., g = 0, hpi reduces to the value given earlier in Ref. [6] obtained for an isolated
nondegenerate dimer. As T increases, the shifted equilibrium position approaches zero, while the frequency of oscillation
between the two states in the occupation probability difference at short times becomes infinite.

4. Application of the Theory II: charge in a strong electric field

Let us now consider the dynamics of a particle of charge q, moving in a 1-dimensional crystal of lattice constant a in the
direction of a strong applied electric field E, as a result of the interaction with a thermal reservoir. In a recent analysis [10],
Eq. (2) was used to calculate the time-evolution of the average velocity of the charged particle,

v(t) = dhM(t)i
dt

=
Z t

0
ds ~�D(s) (34)

suppressing, for simplicity, the multiplicative factor of the lattice constant a. The �’s used were phenomenological. We now
apply the present theory to this system by obtaining the velocity from the microscopic memories obtained here in Eqs. (19).
For this example, ⌦ = E/h̄ and � = ~ . The memory difference �D is given by

~�D(t) = 8
u2

h̄2 e
�g2 coth

⇣

�h̄!0
2

⌘ 1
X

`=1

I`



g2csch
✓

�h̄!0

2

◆�

sinh
✓

`
�h̄!0

2

◆

⇥ sin (`!0t) sin (Et/h̄) e�↵t (35a)

in the multiphonon case, and

~�D(t) = 4g2!2
0 sin (!0t) sin (Et/h̄) e�↵t (35b)

in the single-phonon case, respectively.
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Fig. 3. Staircase behavior and the nonmonotonicity effect seen in the time dependence of the velocity of a charged particle of characteristic energy E moving
along the sites of a crystal, while in strong interaction (g = 2) with optical phonons of peak frequency !0 = E/h̄ and narrow dispersion ↵ = 0.01 E/h̄.
As E/kBT increases (T is decreased), the velocity rises and then falls. As time increases, the steady-state (incoherent limit) value of the velocity is reached.
Periodic kinks are observed about the step-like progression of the velocity at shorter times for lower T . The kinks dissipate with increasing time and
increasing temperature.

The result for the velocity in the multiphonon (strong-coupling) interaction case is

v(t) = 2
u2

h̄2 e
�g2 coth

⇣

�h̄!0
2

⌘

⇥
1
X

`=1

I`



g2csch
✓

�h̄!0

2

◆�

sinh
✓

`
�h̄!0

2

◆

⇥
⇥

f`,�(!0, t) � f`,�(!0, 0) � f`,+(!0, t) + f`,+(!0, 0)
⇤

, (36)

where

f`,±(!0, t) = e�↵t (`!0 ± E/h̄) sin (`!0t ± E/h̄t) � ↵ cos (`!0t ± E/h̄t)
↵2 + (`!0 ± E/h̄)2

, (37)

while in the single-phonon (weak-coupling) interaction case, the velocity has the temperature-independent form

v(t) = 4g2!2
0
⇥

f1,�(!0, t) � f1,�(!0, 0) � f1,+(!0, t) + f1,+(!0, 0)
⇤

. (38)

Initially the velocity is zero in both regimes, but as time progresses, the time-dependent components (the f`,±(!0, t) terms)
produce a step-wise rise in the velocity, the frequency of which is determined by the sum and difference of the system
and bath frequencies, E/h̄ and !0, respectively. The step-like nature of the time-evolution of the velocity is reminiscent of,
and related to, similar effects seen in the theory of dynamic localization [37–39]. In both regimes, the steps dissipate as the
velocity approaches the steady-state value which is expected [10] to approach ~

�

1 � e��E�, where ~ is the T -dependent
relaxation rate associated with each interaction.

In the strong-coupling regime, a temperature dependence for all time exists in the hyperbolic cotangent in the first
exponent as well as in the terms inside the sum. When combined, the terms produce a nonmonotonic T dependence in the
behavior of the velocity, the degree of the nonmonotonicity being determined by the relativemagnitude of the corresponding
time-dependent terms in Eq. (38). In Fig. 3, this nonmonotonic effect canbe seen in the approach to steady state of the velocity
with time. In the multiphonon (strong-coupling) case, the velocity approaches

v(t ! 1) = 2u2

h̄2 e�g2 coth
⇣

�h̄!0
2

⌘ 1
X

`=�1
I`
⇥

2g2n (!0)
⇤

⇥
1
X

k=0

g2k

k!



↵

↵2 + [(k + `) !0 � E/h̄]2
� ↵

↵2 + [(k + `) !0 + E/h̄]2

�

(39)

wherein the expression can be shown to have a direct dependence on the associated relaxation rate (Eq. (20) with⌦ = E/h̄)
and approaches the expected steady-state value.
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Fig. 4. Results for two-phonon interaction with the bath. Plotted is the time dependence of the velocity for different values E/kBT as shown. This is the
weak interaction case, g = 0.02. The inset shows the temperature-independent velocity that arises from interaction with a single phonon band of peak
frequency !0 = E/h̄. In the main figure the two phonon bands have central frequencies !1 and !2, all three phonon bands having a narrow dispersion
↵ = 0.01 E/h̄. Unlike in the inset, the long-time saturation value of the velocity in the main figure increases with increasing T .

The steady-state value of the velocity in the single-phonon (weak-coupling) case, on the other hand, has a temperature
independent form

v(t ! 1) = 4g2!2
0



↵

↵2 + (!0 � E/h̄)2
� ↵

↵2 + (!0 + E/h̄)2

�

. (40)

When written in terms of its associated relaxation rate (Eq. (21) with ⌦ = E/h̄), this can be easily shown to reproduce the
expected steady-state value of ~

�

1 � e��E�. One of the factors responsible for the temperature independence evident in
Eq. (40) is that there is only a single phonon band involved. We therefore investigated the case that two phonon bands are
involved, following the description detailed in Ref. [27]. The result is displayed in Fig. 4. The inset shows the T independence
arising from the single phonon band. The main figure, however, displays the expected dependence on T . The two phonon
bands are peaked at frequency !1 and !2, respectively, and are of narrow width. The resulting memories are of the form

~�±(t) = 2g2
1g

2
2 h̄

2!2
1!

2
2n(!1)n(!2)e�↵t

⇥
n

e�h̄(!1+!2) cos [(!1 + !2 ± E/h̄) t] + cos [(!1 + !2 ⌥ E/h̄) t]

+ e�h̄!1 cos [(!1 � !2 ± E/h̄) t] + e�h̄!2 cos [(!1 � !2 ⌥ E/h̄) t]
o

, (41)

with the difference having an T dependence involving the two frequencies,

~�D(t) = 4g2
1g

2
2 h̄

2!2
1!

2
2 sin (Et/h̄) e�↵t

2
X

i6=j

coth
✓

�h̄!i

2

◆

cos (!it) sin
�

!jt
�

. (42)

It is easily seen that this T dependence is carried out into the expression for the velocity

v(t) = g2
1g

2
2 h̄

2!2
1!

2
2

1
X

k=0



coth
✓

�h̄!2

2

◆

+ (�1)k coth
✓

�h̄!1

2

◆�

⇥
(

f1,� (xk, t) � f1,� (xk, 0) � f1,+ (xk, t) + f1,+ (xk, 0)

)

, (43)

where f`,± (xk, t) is as in Eq. (37) with xk = !1 + (�1)k!2. The temperature dependence present in the expression for the
velocity in this weak interaction with two phonons displays a monotonic behavior with T (see Fig. 4).

5. Application of the Theory III: vibrationally relaxing molecule

As our third example of the application of our theory, we consider a molecule, modeled as a harmonic oscillator of
frequency⌦ , undergoing vibrational relaxation because of its interaction with a bath in which it is embedded. Traditionally,
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Fig. 5. Nonmonotonic temperature (T ) dependence of the energy of the relaxing molecule of characteristic frequency ⌦ in strong interaction (g = 2) with
optical phonons of peak frequency !0 = ⌦ + ↵/2 and narrow dispersion ↵/⌦ = 0.01. Plots are shown of E(t) scaled to its thermal equilibrium value of
Eth for varying T , i.e., for various values of �h̄⌦ , (a), (b), (c), (d), as shown in the legend. A striking dependence is observed as T is increased. The values of T
in units of T0 for curve (a) is 0, for curve (b) is 1, for curve (c) is 2, and for curve (d) is 10, with the corresponding peaks being shown by arrows. The peak
values increase from (a) to (b) to (c) but decrease from (c) to (d). The lower right inset shows the difference between the incoherent limit (Bethe-Teller)
(dashed line) and our GME predictions (solid line) for one representative case, h̄⌦/kBT = 1.

such relaxation has been studied via the Montroll–Shuler equation (MSE) [11]. We use the generalization of that equation
given recently by Kenkre and Chase [10]. The latter authors have shown that one can derive from Eq. (3) the result that the
molecular energy E(t) = h̄⌦

P

M (M + 1/2) PM (t) obeys

E(t) = E(0)⌘(t) + Eth

Z t

0
ds ⇠ (t � s) [1 � ⌘(s)] (44)

where E(0) is the initial energy of the system, Eth = h̄⌦
2 coth

⇣

�h̄⌦
2

⌘

is its thermal or steady-state value, and ⌘(t) and ⇠ (t) are
the Laplace inverses of

⌘̃(✏) = 1
✏ + e�D(✏)

and ⇠̃ (✏) =
e�S(✏)
e�D(✏)

tanh
✓

�h̄⌦
2

◆

, (45)

respectively. Eq. (44) extends to situations of arbitrary coherence the traditional (incoherent) result

E(t) = E(0)e�
⇣

1�e��h̄⌦
⌘

t + Eth



1 � e�
⇣

1�e��h̄⌦
⌘

t
�

. (46)

That result is recovered from Eq. (44) in the Markoffian limit that �̃(✏)’s are replaced by the corresponding �̃(0)’s.
We now use in Eqs. (44), (45) the microscopic memories we have derived in Eqs. (19) to investigate whether any

interesting effects of T and other parameters emerge. In the multiphonon (strong-coupling) case, the �S(t) and �D(t) are

�⌫(t) = 4
u2

h̄2 e
�g2 coth(�h̄!0/2)(1�cos!0t)⇤

�

g2 sin!0t
�

⇤ (⌦t) e�↵t , (47)

where if ⌫ = S (sum), the function⇤(x) is cos(x) and if ⌫ = D (difference) is sin(x) and in the single-phonon (weak-coupling)
case the �S(t) and �D(t) are

�⌫(t) = 4g2!2
0 ⌥ (!0)⇤ (!0t) ⇤ (⌦t) e�↵t , (48)

where the function ⌥ (x) is coth (�h̄x/2) if ⌫ = S (sum) and 1 if ⌫ = D (difference).
While a temperature dependence exists in both the sum and difference of the memories in the multiphonon interaction

case, it is clear from the expressions in Eqs. (48) that the difference of the memories, and hence ⌘(t), is T -independent in the
single-phonon case. This inherent T -dependence disparity in the initial behavior of E(t) signals a difference in the overall
effect of T on the relaxation behavior of the oscillator in the two regimes. This is expected from the T -dependent behavior
of the corresponding relaxation rates, nonmonotonic in the strong-coupling (multiphonon) case, Eq. (20), and Arrhenius in
the weak-coupling (single-phonon) case, Eq. (21).

The nonmonotonic effect with T in the multiphonon interaction case becomes more discernible in Fig. 5 which shows
the time evolution of the average energy resulting from the substitution of the memories in Eq. (24) into Eq. (44) for various



20 A.A. Ierides, V.M. Kenkre / Physica A 503 (2018) 9–25

Fig. 6. Absence of interesting results such as nonmonotonicity for weak-coupling (single-phonon interactions). The time evolution of the average energy
of a harmonic oscillator of characteristic frequency ⌦ in weak interaction (g = 0.02) with optical phonons of peak frequency !0 = ⌦ + ↵/2 and narrow
dispersion ↵/⌦ = 0.01 is plotted with respect to time t , for varying T . As T is increased, the average energy initially rises above the incoherent limit value,
with oscillations decaying faster to Eth . The frequency of oscillation remains the same for all T , while the amplitude shows a direct T dependence, increasing
with increasing T .

values of T . The inset shows a comparison of the coherent (oscillatory) behavior of the energy predicted by the GME of
Eq. (3) to the incoherent (non-oscillatory) behavior predicted by the MSE [11] for one temperature. For each value of T
shown in the main part of Fig. 5, the approach to equilibrium of the energy is dominated by initial T -dependent oscillations
about the steady-state value Eth, and then dissipating to it. The nonmonotonic T dependence is seen clearly in the rise and fall
of the peak amplitude of the energy as T is increased. As the figure shows, the peak value of the energy rises initially (from
a to b) with increasing T and then falls (from c to d) as the period of oscillation increases monotonically. This nonmonotonic
behavior may be explained by the temperature dependence of the relaxation rate in Eq. (20).

Another noteworthy feature seen, particularly at low T , is the existence of periodic kinks observed along the main curve
of E(t), the kink amplitudes dissipating with the progression of time (see Fig. 8). As T is increased, the time interval over
which the kinks are visible is decreased. These kinks are related to the revivals which are known to exist in spin-boson
systems [36,40].

In the Laplace domain, Eqs. (47) and (48) have the forms, respectively,

�̃⌫(✏) = 4
u2

h̄2 e
�g2 coth(�h̄!0/2)

1
X

`=�1

I`
h

g2csch
⇣

�h̄!0
2

⌘i

e`
�h̄!0

2 (✏ + ↵) �` (✏)
⇥

(✏ + ↵)2 + (`!0 + ⌦)2
⇤ ⇥

(✏ + ↵)2 + (`!0 � ⌦)2
⇤ (49)

and

�̃⌫(✏) = 4g2!2
0 ⌥ (!0)

(✏ + ↵)�1(✏)
⇥

(✏ + ↵)2 + (!0 + ⌦)2
⇤ ⇥

(✏ + ↵)2 + (!0 � ⌦)2
⇤ . (50)

Here, if ⌫ = S, the function �`(✏) is ⌦2 + `2!2
0 + (✏ + ↵)2 and if ⌫ = D it is 2`!0⌦ . It can be shown, either numerically in

the multiphonon case or analytically in the single-phonon case, that, in the limit ✏ ! 0, the ratio of the Laplace transform
of the sum and difference of these microscopically derived memories approaches coth (�h̄⌦/2).

In the case of weak interaction also, one notices initial oscillations about, and dissipating to, the steady-state value Eth at
long times with temperature-dependent amplitudes (see Fig. 6), the energy in this case having the analytic form

E(t) =

2

4E(0) � Eth
tanh

⇣

�h̄⌦
2

⌘

tanh
⇣

�h̄!0
2

⌘

⌦2 + !2
0 + ↵2

2!0⌦

3

5 ⌘(t)

+ Eth
tanh

⇣

�h̄⌦
2

⌘

tanh
⇣

�h̄!0
2

⌘

⌦2 + !2
0 + ↵2

2!0⌦
, (51)
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where

⌘(t) = e�↵tL�1

(

⇥

✏2 + (!0 + ⌦)2
⇤ ⇥

✏2 + (!0 � ⌦)2
⇤

⇥

✏2 + (!0 + ⌦)2
⇤ ⇥

✏2 + (!0 � ⌦)2
⇤

(✏ � ↵) + 8g2!3
0⌦✏

)

. (52)

While no general analytic solution exists for ⌘(t), it is evident that no T dependence exists in ⌘(t) for the single-phonon
interaction case, and that the behavior of ⌘(t) is of decaying oscillatory form as expected.

5.1. Introduction of a relaxation memory and an effective rate

As seen in the previous sections, the relaxation rate can be obtained through the Fourier transform of themicroscopically
derived bath correlation functionB(t) evaluated at the oscillator frequency. In this section, we develop an approach in terms
of a relaxation memory and an effective rate. The incoherent result [11], Eq. (46), may be rewritten as

E(t) � Eth
E(0) � Eth

= e�
⇣

1�e��h̄⌦
⌘

t (53)

to emphasize that the effective rate of relaxation is 
�

1 � e��h̄⌦
�

. Although the generalization in Ref. [10] reflected in Eq.
(44) results in a non-exponential time-dependence of the left hand side of Eq. (53), its Laplace transform can always be
expressed as

Ẽ(✏) � Eth/✏
E(0) � Eth

= 1
✏ + ⇣̃ (✏)

, (54)

through the introduction of the Laplace transform of a relaxation memory ⇣ (t). In the incoherent Master equation approxi-
mation, ⇣ (t) is 

�

1 � e��h̄⌦
�

�(t), while in the general case, ⇣ (t) describes coherent oscillations present in the exact result of
E(t) obtained from Eq. (44). The memory is found through the corresponding relation of the energy in Eq. (44) in the Laplace
domain as

⇣̃ (✏) = ✏
⇥

E(0) � Eth⇠̃ (✏)
⇤

[1 � ✏⌘̃(✏)]

E(0) � Eth �
⇥

E(0) � Eth⇠̃ (✏)
⇤

[1 � ✏⌘̃(✏)]
. (55)

We now provide a formula for an effective rate of relaxation in the presence of non-exponential time evolution of the energy
E(t) that can take into account the consequences of all non-exponential features including oscillations. We define it from
Eq. (55) by applying the Markoffian approximation to ⇣ (t). This means putting the Laplace variable equal to zero in the right
hand side of Eq (55), and yields

⇣̃ (0) = 1
R1
0

E(t)�Eth
E(0)�Eth

dt
(56)

If the evolution were totally incoherent (exponential time-dependence), there would be no oscillations and this effective
rate would equal the incoherent rate 

�

1 � e��h̄⌦
�

. But if there are oscillations due to coherence, Eq. (56) would take them
into account as they would enter the effective rate through the integration of the oscillations in the denominator of its
right hand side. Eq. (56) is a prescription that can be used in this fashion on experimental observations of the energy time
dependence. An interesting result emerges when we use it on the numerical solutions we have obtained above. Using the
microscopicmemories derived in Eqs. (19), the behavior of theMarkoffian rate ⇣̃ (0) is plottedwith respect to temperature in
Fig. 7 for the strong interaction case as compared to the incoherent result ofMontroll and Shuler [11]. The plot showsmultiple
oscillationswith increasing T for the scaled effective rate in the strong-coupling (multiphonon) case,while exhibiting a simple
and expectedmonotonic decaywith T in theweak-coupling (single-phonon) case. By contrast, the original incoherentMaster
equation of Ref. [11] results in no oscillations (dashed curve) as the ratio ⇣̃T (0)/⇣̃T=0(0) in theMontroll–Shuler curve is simply
1�e�h̄⌦/kBT , with theMontroll–Shuler rate  being equivalent to the T -independent term ⇣̃T=0(0). An overall nonmonotonic
T dependence exists in the strong interaction regime, where the increasing or decreasing behavior is determined by the T
interval in which observations are made.

5.2. The half-Markoffian approximation: developing an interpolation formula

In this section, on the basis of the half-Markoffian approximation discussed in Refs. [34,41], we develop a useful
interpolation formula to describe the time evolution of the energy. It is found to be exact at very short and very long times,
and to provide an approximate description at intermediate times. The half-Markoffian approximation is defined by taking
an expression which is a convolution of two functions and approximating it by a convolutionless expression as

Z t

0
ds f (t � s)g(s) ⇡ g(t)

Z t

0
ds f (s). (57)
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Fig. 7. Multiple oscillations (solid line) in the temperature dependence of the normalized effective rate of change of the energy, ⇣̃T (0)/⇣̃T=0(0) (see text)
for the strong-coupling case. Parameter values are g = 2, !0 = ⌦ , and ↵/⌦ = 0.01. For comparison, we display the same rate as calculated from the
Montroll–Shuler analysis in Ref. [11] which shows no oscillations and is, indeed, 1 � e�h̄⌦/kBT .

Fig. 8. Interpolation formula developed as Eq. (60) on the basis of the half-Markoffian approximation (see text) showing excellent agreement with the
exact result at extreme (both short and long) times but considerable departures at intermediate times. The energy, scaled to its thermal value, is plotted for
very low T for g = 2, !0 = ⌦ +↵/2, and ↵/⌦ = 0.02. The kinks visible at short times (left panel) and equilibration to the steady-state result of the energy
(middle panel) are faithfully reproduced by our interpolation formula. The full evolution over the three regimes of time are depicted in the right panel.

We begin by converting Eq. (44) to the integro-differential equation

dE(t)
dt

+
Z t

0
dt 0 �D(t � t 0)E(t 0) = Eth tanh

✓

�h̄⌦
2

◆

Z t

0
dt 0 �S(t 0), (58)

and simplifying it further to the form

dE(t)
dt

+
Z t

0
dt 0 �D(t � t 0)E(t 0) = h̄⌦

2

Z t

0
dt 0 �S(t 0). (59)

Eq. (57) is applied to the second term in Eq. (59) to yield

E(t) = h̄⌦
2

+


E(0) � h̄⌦
2

�

e�
R t
0 dt 0ID(t 0) + h̄⌦

Z t

0
dt 0I+(t 0)e�

R t
t0 dsID(s), (60)

where I⌫(t) =
R t
0 dt 0�⌫(t 0).

The exponential decay of the second term of the energy in Eq. (60) which is dependent on the difference in thememories,
�D(t), parallels the inherent exponential decay of ⌘(t) in Eq. (44), starting from a finite value and decaying to zero over
time. The first term describes the zero-temperature result for the energy in the steady state, which, when combined with
the third term, reveals a T dependence, which in the long time limit reveals the steady-state value of the energy Eth. When
the Markoffian approximation is applied and I⌫(t ! 1) = 

�

1 ± e��h̄⌦
�

, the ‘+’ corresponding to ⌫ = S and the ‘�’ to
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⌫ = D, the incoherent Montroll–Shuler [11] or Bethe–Teller [42] result is obtained:

E(t) = E(0)e�
⇣

1�e��h̄⌦
⌘

t + Eth



1 � e�
⇣

1�e��h̄⌦
⌘

t
�

. (61)

Substitution of Eqs. (19b) and (47) into Eq. (60) shows that, indeed, the kinks arise from the behavior of the difference in the
memories, at least at short times. Fig. 8 shows the half-Markoffian approximation in comparison to the exact and Bethe–
Teller results. An excellent agreement of our interpolation formula is seen at both short and long times with the exact result,
but it fails to predict the intermediate behavior accurately.

6. Concluding remarks

Our investigation of the relaxation to equilibrium of three simple quantum systems has uncovered some interesting and
unexpected results when the system–reservoir interaction is strong. The analysis has employed a dressing transformation,
polaronic in nature, that treats much of the strong interaction exactly and then treats the remaining (weak) interaction
perturbatively [20–24,28]. The two interactions we have analyzed, which we have termed single-phonon or weak-coupling
in one case andmultiphonon or strong-coupling in the other, have the same system–bath interaction V = VBa†a+u

�

a + a†
�

.
The first case is for weak VB and vanishing u and the second for strong VB and weak u, respectively. Whereas the final
expression for the relaxation rate, Eq. (20), is essentially the same as one for the corresponding transition rate in standard
polaron theory for the mobility of a quasi-particle moving among nonresonant states, the source of the interactions is quite
different in the two cases. The main distinction is in the rationale for the term3 that connects the two states. In the standard
mobility problem, the rationale is the very motion of the quasi-particle from state to state. In our present relaxation case on
the other hand, it arises from compatibility with the Landau–Teller ansatz [13] of a constant force exerted by the reservoir.
This constant force is absent in standard polaron mobility theory. It corresponds, in the vibrational relaxation case of our
paper, to a Hamiltonian term proportional to the displacement for the molecular oscillator, a + a†, and its formal structure
is maintained for the other two systems analyzed.

Coarse-grained extensions [10,17,18] of the Zwanzig projection technique [14–16] have been used to obtain GME’s in the
system probabilities of occupation and solved explicitly for the evolution of system observables. An important element of
the analysis is the initial state of the system. To ensure that the GME without an additional driving term can be written as
given, e.g., in Eq. (8), the initial state is taken to be an outer product of the system and the bath in the first case, but of the
dressed system and the dressed bath in the second. As is standard in most treatments, if an initial driving term is present in
the GME, it is assumed to decay faster than the memories [43].

One of the interesting effects we find is a nonmonotonic variation of the observable associated with each of the three
systems. It is apparent in the temperature variation of the rate of change of the energy of the molecular oscillator (third
system), see Figs. 5 and 7; in the temperature dependence of the steady-state value of the average velocity of the charged
particle moving across the sites of a crystal under the influence of a strong electric field (second system), see Fig. 3 and
in the occupation probability difference for the simple nonresonant dimer (first system), see Fig. 2. This effect is seen only
for strong coupling (effectively multiphonon interactions). We have shown explicitly, see Fig. 6, that it does not arise for
weak-coupling (single-phonon interactions).

A useful byproduct of the analysis is the half-Markoffian approximation thatwehave developed in Section 5. Derived from
the integro-differential equation for the energy in Eq. (59), it predicts rather well the extreme, that is short- and long-time,
relaxation behavior of themolecular oscillator, although it does not provide an accurate prescription for intermediate times.
Its advantage lies in eliminating the necessity for excursions into the Laplace domain.

The peculiar temperature variation of the relaxation of the third system analyzed here (Section 5) may be related to
observations reported by Fayer and collaborators [44,45]. The experimental report given a couple of decades ago, concerned
W(CO)6 dissolved in CHCl3 and provided an explanation of an ‘‘inverted’’ T -dependence of relaxation on the basis of assumed
properties of the liquid phonon density of the solvent. It is possible that our analysis in Fig. 7 might provide an alternate
explanation on the basis of the more straight-forward polaronic features of the interaction that we have assumed here. We
hope to return to a quantitative comparison of the explanations in a future publication.

Appendix. Comments on detailed balance

We have seen that multiplication by the damping factor e�↵t in Eqs. (19) is essential to avoid infinities given the
fact [28,32] that linear interactions cannot broaden zero-phonon lines. However, the use of a single ↵ for all transitions
is an approximation that introduces its own inaccuracy. We have provided Fig. A.1 to make this clear. The rates described
in Eqs. (20) and (21) satisfy detailed balance with their energetically upward transition counter-parts at higher T , but strict
detailed balance fails for low T . The remedy lies in coarsening the description in !-space and considering a rectangular
function of narrow width ↵ centered about each corresponding frequency $ along the spectrum, i.e.,

1
⇡

↵

↵2 + $ 2 ⇡ 1
↵
rect

⇣$

↵

⌘

= 1
↵

h

⇥
⇣

$ + ↵

2

⌘

� ⇥
⇣

$ � ↵

2

⌘i

. (A.1)

3 The term is the product of a + a† with, respectively, VB for the weak-coupling case and u for the strong-coupling case (see Section 2).
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Fig. A.1. Detailed balance of the transition rates associated with each interaction regimewith respect to temperature T in units of T0 = h̄!0/kB . The system
is a harmonic oscillator of characteristic frequency ⌦ in strong (g = 2) and weak (g = 0.02) interaction with optical phonons of peak frequency !0 = ⌦
and narrow dispersion ↵/⌦ = 0.01. The conservation of detailed balance for all T is observed for the case in which the rates are described by rectangular
functions (main) while strict agreement with detailed balance is observed to fail at low T , but not too dramatically, for the case in which ↵ is introduced
via Lorentzians (inset). The failure is represented by the non-coincidence of the solid and dashed lines in the inset.

The corresponding rates of Eqs. (20) and (21) may be written in terms of rectangular functions as

� = 2⇡
u2

h̄2↵
e�g2 coth

⇣

�h̄!0
2

⌘ 1
X

`=�1
I`
⇥

2g2n (!0)
⇤

1
X

k=0

g2k

k! rect
✓

(k + `)!0 � ⌦

↵

◆

(A.2)

in the multiphonon (strong-coupling) interaction case, and

� = 2⇡g2 !2
0

↵

⇢

[n (!0) + 1] rect
✓

!0 � ⌦

↵

◆

+ n (!0) rect
✓

!0 + ⌦

↵

◆�

(A.3)

in the single-phonon (weak-coupling) case, respectively. With the forms of the rates in Eqs. (A.2) and (A.3) detailed balance
between the energetically upward and downward transition rates is restored (see Fig. A.1). See the narrow peaks (or
tabletops) and sharp drop-off of the rectangular functions.
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