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Abstract. Starting from a Langevin equation with memory describing the attraction of a particle to a
center, we investigate its transport and response properties corresponding to two special forms of the
memory: one is algebraic, i.e., power-law, and the other involves a delay. We examine the properties
of the Green function of the Langevin equation and encounter Mittag-Leffler and Lambert W-functions
well-known in the literature. In the presence of white noise, we study two experimental situations, one
involving the motional narrowing of spectral lines and the other the steady-state size of the particle under
consideration. By comparing the results to counterparts for a simple exponential memory, we uncover
instructive similarities and differences. Perhaps surprisingly, we find that the Balescu-Swenson theorem
that states that non-Markoffian equations do not add anything new to the description of steady-state or
equilibrium observables is violated for our system in that the saturation size of the particle in the steady-
state depends on the memory function utilized. A natural generalization of the Smoluchowski equation for
the time-local case is examined and found to satisfy the Balescu-Swenson theorem and describe accurately
the first moment but not the second and higher moments. We also calculate two-time correlation functions
for all three cases of the memory, and show how they differ from (tend to) their Markoffian counterparts
at small (large) values of the difference between the two times.

1 Introduction

The time evolution of the probability density of a parti-
cle attracted to a center via harmonic forces while being
simultaneously subjected to white Gaussian noise is of in-
terest in a large variety of contexts. The label Ornstein-
Uhlenbeck is attached to the system or process under
such situations and the governing equation is said to be
the Smoluchowski equation. It is ubiquitous in statistical
mechanics [1,2] and, in a one-dimensional system takes
the form

∂P (x, t)
∂t

=
∂

∂x

(
γxP (x, t) + D

∂P (x, t)
∂x

)
(1)

where γ measures the rate of attraction to the fixed cen-
ter and D is the diffusion constant. Its solutions are well-
known as being essentially identical to those of the sim-
ple diffusion equation (no attractive center) provided the
time t itself undergoes a saturation transformation via
the Ornstein-Uhlenbeck prescription: t → (1 − e−2γt)/2γ.
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The word “essentially” refers here to the fact that ini-
tial conditions dictate in this context an extra term not
present in the diffusion equation. The term decays at the
rate γ in a well-known way.

Our interest in the present paper is in systems in
which the attraction to the center proceeds via a time-
nonlocal process. Memory-possessing Langevin equations
have come under investigation in various unrelated con-
texts in the past, but it is appropriate to say that
modern work on the topic appears to have begun with
Budini and Cáceres [3]. In a report with far-reaching
conclusions, they studied generalized Langevin equations
producing many interesting results, but restricted their
investigations primarily to the exponential memory, fo-
cusing on various kinds of non-Gaussian noise includ-
ing radioactive, Poisson, and Abel noise. They touched
upon algebraic memory using fractional derivatives but
assumed zero dissipation in their analysis, i.e., γ = 0.
In a more recent study, they analyzed stationary proper-
ties of Langevin equations with memories of the algebraic
and delay type [4] as did Drozdov [5] using functionals
to characterize various noise distributions. There is also
an intriguing report in the literature by Fiscina et al. [6]
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of related ideas to the behavior of vibrated granular ma-
terial: they found that the observed asymptotic spectral
density could be well described using a Langevin equation
with fractional derivatives. Work exploring the dynamic
behavior of a non-Markoffian Langevin equation was re-
ported by Bolivar [7] for arbitrary Gaussian noise corre-
lation functions with a focus on the differentiability of
the displacement. A path integral analysis of a Langevin
equation with exponential memory has also appeared [8].
Fractional derivatives have been used [9] to introduce what
are in essence memory effects into fractional probability
density equations. General expositions of the subject that
have been highly useful for a number of years are available
in various articles [10–13].

As is well-known, stochastic analysis may be under-
taken either via Langevin equations or via what has often
been called a formalism based on Fokker-Planck equa-
tions. The former are ordinary differential equations for
stochastic variables. The latter are partial differential
equations for the deterministic probability density of those
variables, an average of the stochastic variables carried out
with the help of the probability density leading to expec-
tation values. In the present paper, except for a discussion
leading into the problem as well as an interesting obser-
vation at the end of the analysis, we will not use Fokker-
Planck equations. A number of subtleties and controver-
sies appear in the discussion of Fokker-Planck equations
and we plan to address them in a separate publication.
Our focus in the present paper will be entirely on the
Langevin approach: the ordinary differential equation for
the basic stochastic variable under consideration is solved
explicitly for the given memory and noise, and the desired
function of the variable, for instance an arbitrary power,
is averaged taking into account the properties of the noise.

Thus, our general interest is in treating systems in
which the Langevin equation for the coordinate xi of the
ith particle is

dxi(t)
dt

= −γ

∫ t

0

dt′ φ(t − t′)xi(t′) + ξi(t), (2)

where ξi(t) denotes the noise and φ(t) is the memory func-
tion. The case when the memory is a δ-function, i.e., when
the Langevin equation is time-local, corresponds to equa-
tion (1). Our specific interest is in two forms of the mem-
ory: algebraic, i.e., power law, and incorporating a delay,
as we will explain below.

One example of how non-local (in time) Langevin
equations may come about in physical processes is pro-
vided by a scenario in which one refrains from making
the high-damping approximation in the Langevin equa-
tion. Normally, as a result of Newton’s law, the latter is
a second order equation for the time dependence of the
particle coordinate x. If the damping is very strong, the
normal practice is to reduce it to a first order equation
by neglecting the inertial term. If the inertial term is kept
intact, both variables, the coordinate x and the velocity v,
are typically treated on an equal footing. An alternative,
viable when observables dependent only on the coordi-
nate (and not the velocity) are of interest, is to stick to a

one-variable description but to introduce a memory func-
tion relating the time derivative of x to an appropriate
function of x. Such a situation has been discussed in a
recent review of the mathematics of animal motion by
two of the present authors [14]. The origin of the memory
function or of time-nonlocality would be, in this case, the
incorporation of inertial terms. A quite different source of
time-nonlocality is finiteness of the speed of propagation
of signals that are related to the attraction process. Ex-
amples may be found in delay formalisms as in a study
of Alzheimer walks [15] and a recent analysis of pairwise
movement coordination [16] applicable, e.g., to a system
of foraging bats [17].

Although we will not use Fokker-Planck equations
for our analysis, we will begin our considerations with
the Smoluchowski equation (1). We do this because it
is easy to introduce our task in that manner and also
because there has been a lot of recent activity on that
equation. Thus, an analysis has shown [18] how the
Smoluchowski equation may be applied to trapping situa-
tions and a recent application to the spread of epidemics
has been made [19] leading to an interesting description
of the transmission of infection in diseases such as the
Hantavirus [20].

The rest of the paper is laid out as follows. We first
show in the next section why an intuitively natural mem-
ory generalization of an equation such as equation (1)
does not work. We place our full focus therefore on the
Langevin equation with memory. We are generally inter-
ested in biological processes far from thermodynamic equi-
librium. The near-equilibrium requirement of fluctuation-
dissipation relations between the noise and the memory
then need not apply. To facilitate calculations we take the
noise to be white. Although this restriction is not essen-
tial, we limit ourselves to this case on one hand because of
its general usefulness in providing insights into a variety of
biological systems [21] ranging from physiological [22,23]
to ecological scales [24], and on the other hand because of
the already rich scenario that we uncover even when the
noise is not colored. In Sections 3 and 4 respectively, we
obtain explicit usable prescriptions, specifically for alge-
braic and delay-type memories in the Langevin equation.
We find the Green function for the case of an algebraic
memory to be the Mittag-Leffler function. In the case of
a single delayed delta function, it is associated with the
Lambert function. A regime in which there is a mono-
tonic decrease on the one hand and decaying oscillations
on the other is found in each of the two Green functions.
This is precisely the behavior shown by the simple and
well understood case, for instance for a damped harmonic
oscillator, when the memory is an exponential.

We discuss in Section 5, two applications of our results
in the context of two specific experiments that could be
performed on our system in principle. The first is about
motional narrowing in the frequency-dependent suscepti-
bility of our system wherein the particle is charged and a
time-periodic electric field is applied. The second queries
the steady-state size of the system as measured by the
mean square displacement of the particle around its fixed
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center under the combined action of the time-nonlocal at-
traction and the diffusion. Comparison of the results for
the three memories considered, the algebraic, the single
delay, and the simple exponential, brings out interesting
similarities and differences. In the discussion which consti-
tutes Section 6, we analyze a natural but incorrect general-
ization of the Smoluchowski equation yet find the remark-
able result that its predictions are correct in the context
of the first of the two envisaged experiments.

Contexts in which the analysis presented in this paper
should find applicability are, generally speaking, biologi-
cal systems far from equilibrium. These include movement
of animals having a preference to places visited in the
past [25] and various versions of what has been called in
the mathematical literature ‘self-reinforced random walks’
as are met in Alzheimer-related investigations [26]. The
complexity of the biological nature of the systems involved
necessitates a memory description at the Langevin level
and the fact that we are not necessarily near equilib-
rium suggests that a fluctuation-dissipation relationship
between the memory and the noise need not apply mak-
ing our simplification of Gaussian noise a useful first step
in the analysis.

2 Viable route for the description of memory
effects

The temptation to generalize the Smoluchowski equa-
tion (1), to incorporate memory effects present in its
Langevin equation as in (2), by making (1) itself nonlocal
in time is natural but meets with the following problem.
Let us, in addition to the coordinate xi(t), define the ve-
locity of the ith particle at time t as vi(t) = dxi(t)/dt, the
latter being given as a stated function of xi(t). The obvi-
ous manner of transforming from a particle description to
a field description in the space of the field variable x is to
begin with the microscopic definitions of the (probability)
density P (x, t) and the current density j(x, t),

P (x, t) =
∑

i

δ(x − xi(t)),

j(x, t) =
∑

i

dxi(t)
dt

δ(x − xi(t)),

and to obtain the continuity equation as a consequence:

∂P (x, t)
∂t

+
∂j(x, t)

∂x
= 0. (3)

One then expresses the x-derivative of j(x, t) by replac-
ing xi(t), wherever it occurs, by x given that δ(x − xi(t))
is present as a multiplying factor. This allows us to com-
bine the continuity equation with the specific relation be-
tween vi(t) and xi(t) that forms the constitutive relation,
and thereby to obtain the Smoluchowski equation. Specifi-
cally, for the simple time-local case in the absence of noise,

vi(t) ≡ dxi(t)
dt

= −γxi(t). (4)

Needless to say, this is the high-friction (sometimes re-
ferred to as the Aristotelian) limit corresponding to the
time-local approximation to the Langevin equation. If
standard procedures [27] are now used to derive the dif-
fusion term from the noise in the Langevin equation, one
obtains (1). This description may be found for instance in
the textbook by van Kampen [28].

However, if the Langevin equation has memory effects
as in equation (2), xi(t) cannot be replaced by x in the
t-nonlocal velocity equation (2). The connection is to val-
ues of x occupied by the ith particle at all times in the
past. It is then impossible to replace xi(t′) for all t′ by x:
the delta-functions in x do not allow xi(t) to be replaced
by x. This technical failure to arrive at non-Markoffian
field equations is a direct consequence, inevitable at least
at this level, of the memory nature of the interaction.

A viable route to the description of memory effects lies,
however, in refraining from a generalization of equation (1)
and in restricting one’s attention entirely to the Langevin
approach. There are in the literature a number of discus-
sions centered on probability density evolution [29–32].
For instance, for the specific case of Gaussian white
noise, a Fokker-Planck like equation of the Smoluchowski
form results. San Miguel and Sancho [32] address a sys-
tem consisting of a Brownian harmonic oscillator with fi-
nite inertia. Involved is a second-order linear Langevin
equation subject to an additive Gaussian stochastic forc-
ing. Although their derivation is specifically performed
for the Brownian harmonic oscillator and results in an
exponentially decaying memory kernel,

φ(t) = be−bt, (5)

it can be easily generalized to any arbitrary linear memory
kernel. The b in equation (5) obeys γb = ω2, the square of
the oscillator frequency.

Let us avoid the probability density treatments and
start from equation (2). Since there are no inter-particle
interactions, we consider a single particle and drop the
label i without loss of generality. Let λ(t) be the Green
function of the homogenous (without noise) part of equa-
tion (2). An immediate consequence of equation (2) is

λ̃(ε) =
1

ε + γφ̃(ε)
(6)

in the Laplace domain: tildes denote Laplace transforms
and ε is the Laplace variable. This result leads to the
solution of equation (2) in the time domain as

x(t) = λ(t)x(0) +

t∫
0

dt′λ(t − t′)ξ(t′). (7)

From here onwards, we only consider systems in which the
noise ξ(t) has zero mean, 〈ξ(t)〉 = 0, and is white, which
means that 〈ξ(t)ξ(s)〉 = 2Dδ(t− s) where the constant D
describes the strength of the noise. Expectation values of
arbitrary powers of x at a specified time can be calculated
explicitly, making the reasonable additional assumption
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that the noise is uncorrelated also with the initial value
of the observable. The result for the average displacement
and average square of the displacement is:

〈x(t)〉 = x0λ(t), (8)

〈Δx2(t)〉 = 〈x(t)2〉 − 〈x(t)〉2 = 2D

t∫
0

dsλ2(s), (9)

where we take the (localized) initial condition as x(0) =
x0. In light of the fact that equation (2) already has t = 0
as a special instant at which the memory is initialized, we
observe that there are now two, generally different, times 0
and t0, the latter being the time at which 〈x(t0)〉 is first
measured, e.g., the initial observation time. For the sake
of simplicity, we have used t0 = 0; in general the two times
may well be different. For non-Markoffian processes, the
general case for which the two times are different leads
to interesting subtleties which we do not analyze in the
present work. In the second line we have displayed the
difference of the average of the square of the displacement
and the square of its average. We represent it by the sym-
bol 〈Δx2〉 and refer to it, rather than to 〈x2〉, as the mean
square displacement (MSD). Expectation values of two-
time quantities such as the correlation function 〈x(t)x(s)〉
can also be obtained straightforwardly:

〈x(t)x(s)〉 = x2
0λ(t)λ(s) + 2D

s∫
0

dt′λ(t − t′)λ(s − t′),

(10)

f(t, s) ≡ 〈x(t)x(s)〉 − 〈x(t)〉〈x(s)〉

= 2D

s∫
0

dt′λ(t − t′)λ(s − t′). (11)

The above results do not require that the noise be
Gaussian. If, however, it is known to be Gaussian we can
also write, for arbitrary powers of the displacement,

〈xn(t)〉 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑p
m=0

(2p)!
(2m)!(p−m)!

〈
x2m

0

〉
λ2m(t)

×
(
D
∫ t

0 dsλ2(t)
)p−m

even n
(
p ≡ n

2

)
,∑p

m=0
(2p+1)!

(2m+1)!(p−m)!

〈
x2m+1

0

〉
λ2m+1(t)

×
(
D
∫ t

0
dsλ2(t)

)p−m

odd n
(
p ≡ n−1

2

)
,

and thereby solve the entire problem on the basis of the
Gaussian property.

3 Algebraic memories in the Langevin
equation

The family of algebraic functions provides a useful case
study of the class of memories that cannot be approxi-
mated via a Markoffian procedure. The latter means the
replacement of φ(t) for long times by a delta-function in t

of strength
∫∞
0 dtφ(t). We consider such memories as our

starting point for the present section:

φ(t; ν) =
α(αt)ν−1

Γ (ν)
. (12)

Here α is a positive constant with units of inverse time
and Γ (ν) provides the appropriate normalization. We
analyze the Green function λ(t).

The Laplace transform1 of equation (5), and inser-
tion into equation (6), gives the Laplace domain Green
function as,

λ̃(ε; ν) =
1

ε + γαν

εν

=
εν

εν+1 + γαν
=

1
ε
(
1 + γαν

εν+1

) , (13)

which is the Laplace-domain representation of the Mittag-
Leffler function of one parameter, written in usual nota-
tion as Eν+1(−γανtν+1) [33]. In the time domain, setting
γαν ≡ ζν+1, this results in the series,

λ(t; ν) =
∞∑

n=0

[
− (ζt)(1+ν)

]n
Γ (n(1 + ν) + 1)

. (14)

This expression is derived through a binomial expansion of
the denominator in equation (13). One obtains a formal
series in increasing powers of (ζ/ε)1+ν . A term-by-term
inverse Laplace transform of this formal series results in
equation (14) for all ν > −1. The resulting series converges
for all finite times.

For the parameter range of interest, the Green func-
tion we have calculated shows three interesting types of
behavior. The first is an overdamped decay, ν ∈ (−1, 0),
the second is underdamped oscillations, ν ∈ (0, 1), and the
third unstable oscillations, ν ∈ (1,∞). We depict λ(t) for
the cases of overdamped decay (left) and underdamped
oscillations (right) in Figure 1 over 16 dimensionless time
units ζt. The overdamped regime exhibits sharper initial
decays, but longer tails, as the value of ν is made more
negative. Both, the amplitude of oscillation and the time
for which they persist, increase for increasing ν in the un-
derdamped regime. The value of dλ(t)/dt at t = 0 changes
discontinuously when ν approaches 0 from either direc-
tion. For positive values of ν it vanishes. For negative val-
ues it tends to infinity. This behavior is sharply different
from that in the case of the simple exponential memory
characteristic of the damped harmonic oscillator. For the
latter, dλ(t)/dt at t = 0 always vanishes. Not shown are
the unstable oscillations for values of ν > 1. Three spe-
cial values exist. For ν = −1, we have standard Brownian
diffusion, i.e., a Wiener process or an unconfined random
walk. For ν = 0, we have the standard Smoluchowski equa-
tion, the Ornstein-Uhlenbeck process. For ν = 1, we have
pure oscillations with no damping.

1 The Laplace transform of (12) only exists for ν > 0. How-
ever, the form of the Laplace-domain noiseless Green function,
(13), suggests extending the domain of validity to ν ≥ −1. In
this range, the Green function is unity when t = 0 (except for
ν = −1 where λ(t) = 1/2).
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λ(t; ν) = − sin νπ

π

∞∫
0

dre−rζt rν

r2(ν+1) − 2rν+1 cos νπ + 1

+

⎧⎪⎨⎪⎩
0 −1 < ν ≤ 0

2
ν+1

e−ζt cos νπ
ν+1 cos(ζt sin νπ

ν+1
) 0 < ν ≤ 2

2
ν+1

[
e−ζt cos νπ

ν+1 cos(ζt sin νπ
ν+1

) + e−ζt cos 3νπ
ν+1 cos(ζt sin 3νπ

ν+1
)
]

2 < ν ≤ 4

(15)

t
0 5 10 15

(t
)

0

0.2

0.4

0.6

0.8

1
Overdamped Regime

= -0.8
= -0.6
= -0.4
= -0.2

t
0 5 10 15

(t
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Underdamped Regime

= 0.2
= 0.4
= 0.6
=0.8

Fig. 1. The noiseless Green function, λ(t), for varying ν in equation (14) over the overdamped (left) and underdamped (right)
regimes in the range [−0.8,−0.2] and [0.2, 0.8] in steps of 0.2. Time is plotted in units of 1/ζ. As ν is made more negative, λ(t)
approaches 0 more slowly. As ν is made more positive, the amplitude of the oscillations increases and they last longer.

A second representation of λ(t) is found by explic-
itly closing the Bromwich contour. For all non-integer
values of ν, (13) has at least two singularities of inter-
est: branch points at zero and infinity, connected by a
branch cut chosen to be along the negative real axis. This
choice of branch cut is made to restrict the domain of ε to
the Riemann sheet with | arg(ε)| < π. Additionally, sim-
ple poles exist for all relevant values of ν at the points
ln(ε) = ±i(1+2m)π/(ν +1) where m is an integer greater
than zero. However, not all fall on the relevant Riemann
sheet. When ν < 0, there are no additional simple poles.
As ν passes through each successive even integer, two ad-
ditional poles move on to the relevant Riemann sheet.
Therefore, the Bromwich integral of equation (13) can be
performed to quadrature and results in

see equation (15) above

where λ(0; ν) equals 1 for all ν. The integral in equa-
tion (15) is the Laplace transform of a positive definite
function and, for non-integer values of ν, is therefore
non-negative at all times. As mentioned previously, addi-
tional exponential terms become relevant as ν is increased
further.

We have given two separate representations of λ(t) in
the time domain: the series, (14), and the integral expres-
sion, (15). These are compared in Figure 2, over a range
of approximately 30 dimensionless time units for 2 values
of ν in each regime, ±0.1 and ±0.9. The two representa-
tions match up well over shorter time periods. However, at
longer times, the numerical implementation of the series
leads to divergent results as a consequence of round-off
errors.

The integral in equation (15) is not reducible in terms
of known functions for arbitrary ν. For the particular case
of ν = m + 1/2, where m is an integer, a transform of
u = r1/2 simplifies the integrand to

(−1)m+1 2
π

∫ ∞

0

due−u2ζt u2(m+1)

u2(2m+3) + 1
.

The denominator of this integral is easily factorable into
the (2m + 3)th roots of 1. This results in the standard
integral representation of the Faddeeva function, w(iz) =
erfcx(z), which corresponds to the scaled error functions
with complex arguments [34]. We give here the ν = −1/2
(m = −1) and ν = 1/2 (m = 0) cases:

λ

(
t;−1

2

)
= eζterfc

(
(ζt)

1
2

)
, (16)

λ

(
t;

1
2

)
= e−

ζt
2 cos

3
1
2 ζt

2
+ w

(
i(ζt)

1
2

)
− w

(
i
(
ζte

i2π
3

) 1
2
)
− w

(
i
(
ζte−

i2π
3

) 1
2
)

.

(17)

The long-time behavior of the Mittag-Leffler function,
valid for non-integer values of ν in the region (−1, 1), is
well-known [33],

λ (t → ∞; ν) = −
p∑

n=1

1
Γ [1 − n(ν + 1)]

[ −1
(ζt)(ν+1)

]n

+ O
(
t−p(ν+1)

)
. (18)
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t
0 5 10 15 20 25 30 35

(t
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Fig. 2. Depicts the integral representation and the series representation of the Green function, λ(t), over short times for the
overdamped regime (left) and the underdamped regime (right) for ν = ±0.2,±0.8. The series representation is indicated by
dots and the integral representation by solid lines. At approximately 30 dimensionless time units ζt, the series begins to diverge
as a result of numerical round-off results.
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Fig. 3. Comparison at long times of the integral expression, equation (15), of the noiseless Green function (solid line) with its
series approximation (dashed line), equation (18). The latter consists of the first 5 terms for 3 values of ν, 0.1 (left), 0.5 (center),
and 0.9 (right) over differing time ranges.

We see that an algebraic memory results in an algebraic
time-dependence of λ(t) at long times. The dominant term
in the series, proportional to 1/ (ζt)1+ν , leads to a decay
which is stronger when ν is larger. In the underdamped
regime, the leading term of (18) is negative. Therefore,
at long times, λ(t) approaches zero from below, confirm-
ing the existence of at least one minimum. This term is
positive for the overdamped regime. The correspondence
between the long-time approximation, equation (18) with
5 terms, and the full propagator is depicted in Figure 3 for
6 values of ν: ±0.1, ±0.5, ±0.9. The long-time approxima-
tion does not lead to oscillations, rather to an overall de-
cay towards 0. For smaller values of |ν|, the approximation
becomes valid at earlier times.

Thus, the algebraic memory leads to a noiseless Green
function that corresponds exactly to the Mittag-Leffler
function. Three separate regimes emerge: overdamped de-
cay, −1 < ν ≤ 0, underdamped oscillations, 0 < ν < 1,
and unstable oscillations, ν ≥ 1.

4 Memories that represent delay processes

We now focus on the particular case of a memory which se-
lects only one time τ in the past via a Dirac-delta centered
at τ . In other words,

φ(t) = δ(t − τ). (19)
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To avoid dealing with a piece-wise process, i.e. Wiener
dynamics for 0 ≤ t < τ , and delayed dynamics for t ≥ τ ,
we extend the range of integration in the Langevin equa-
tion (2), back in time to −τ < 0 and consider,

dx(t)
dt

= −γ

∫ t

−τ

ds φ(t − s)x(s) + ξ(t), (20)

such that at time t = 0 the evolution of x is now de-
pendent on the history of x between t = −τ and t = 0.
After inserting φ(t) = δ(t− τ) in equation (20) one recog-
nizes that the system is governed by the stochastic delay
Langevin equation,

dx(t)
dt

= −γx(t − τ) + ξ(t), t > 0

x(t) = Φ(t), − τ ≤ t < 0, (21)

where Φ(t) is a given deterministic history function. To
solve this stochastic delay differential equation we use the
Laplace transform and obtain [35]

x(t) = x(0)λ(t) +
∫ t

0

ds λ(t − s)ξ(s)

− γ

∫ 0

−τ

ds λ(t − s − τ)Φ(s), (22)

which is formally equivalent to equation (7), with the addi-
tional term representing the history-dependence. In equa-
tion (22) the Laplace transform of the Green function λ(t)
is given by,

λ̃(ε) =
1

ε + γe−ετ
. (23)

We now turn to the analysis of single delay processes.
The analytic calculation of λ(t) from equation (23) has

been performed independently or repeated by a number
of authors [15,16,36–38] following different methods. Using
Cauchy’s residue theorem one can write λ(t) as:

λ(t) =
∑
Res

eεt

ε + γeετ
, (24)

where the summation is over the residues. The poles of
λ̃(ε) are the roots, η, of the characteristic equation, η +
γe−ητ = 0, which can be written in the form ητeητ = −γτ .
This latter transcendental equation corresponds exactly
with the inverse relationship, W (z)eW (z) = z, defining the
so-called Lambert function, W (z) [36,39]. By direct com-
parison we see that the roots of the characteristic equation
for the single delay process are given by the multivalued
Lambert function,

η =
1
τ
W (−γτ). (25)

Given the well documented computational procedures for
evaluating the Lambert function [40], λ(t) can be com-
puted with sufficiently high precision. The roots η of

the characteristic equation provide information about the
evolution and stability of the system at long times. It
is known [35] that the system decays monotonically for
0 ≤ γτ < e−1, undergoes oscillatory decay for e−1 ≤ γτ <
π/2, and performs unstable oscillations for γτ > π/2. At
long times the eigenvalue with the largest real part, cor-
responding to the principal branch of the Lambert func-
tion W0, dominates the behavior of the system. In the
monotonic regime (γτ < e−1), this principal branch can
actually be evaluated analytically [40] via W0(−γτ) =
−∑∞

n=1 nn−1(γτ)n/n!.
Whilst the expression for λ(t) in equation (24) is ex-

act and provides insights into the long time behavior of
the system, it is of limited use for studying the dynam-
ics of the system at shorter times because of the large
number of eigenvalues required. An alternative expression
can be derived for λ(t) by expanding (23) as a power series
and performing the Laplace inversion to give the following
expression [15,16,37,38],

λ(t) =
∞∑

k=0

(−γ)k

k!
(t − kτ)kΘ(t − kτ), (26)

where Θ represents the Heaviside step function.
The alternative exact expression (26) requires only a

finite number of terms for any finite time t with a func-
tional dependence given by a polynomial of degree k in
each interval kτ ≤ t ≤ (k + 1)τ . Expansion of the sum
in equation (26) shows in fact explicitly that λ(t) = 1
for t ∈ [0, τ ], and = 1 − γ(t − τ) for t ∈ [τ, 2τ ], and
= 1 − γ(t − τ) + α2(t − 2τ)2/2 for t ∈ [2τ, 3τ ], and so
on. From these polynomials we can study properties of
the Green function, such as the time at which it first
reaches zero, denoted t0, when the system is in the os-
cillatory regime. The Green function is constant on the
first interval and thus clearly t0 > τ . The Green function
on the second interval, when τ < t0 ≤ 2τ , has one root
at t0 = τ + 1/γ, which corresponds with the first zero
crossing when γτ ≥ 1. This implies that the first zero is
found in the second interval for the entirety of the unsta-
ble regime (γτ ≥ π/2), and roughly half of the oscillating
regime (γτ ≥ e−1). For other parameter values in most
cases one has to find the roots of the higher order poly-
nomials numerically. Examples of the different regimes for
λ(t) are shown in Figure 4. Note also that, as τ → 0, we
recover the Ornstein-Uhlenbeck process (no memory ef-
fects in the attraction to the center) and, as γ → 0, we
have the Wiener process, i.e., a standard walk with no
confinement.

5 Application to experiments and comparison
of consequences of different forms
of the memory

With an application of our formalism in mind, to two ex-
periments possible in principle, one on the motional nar-
rowing of spectral lines and the other on the spatial exten-
sion of the particle in the steady-state, we now compare
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Fig. 4. The noiseless Green function λ(t) for the single de-
lay process. Four choices of the parameter γτ are considered,
representing the stable non-oscillatory, stable oscillatory and
unstable oscillatory regimes. The first zero crossings of the os-
cillatory curves occur in the second interval for γτ ≥ 1, specif-
ically at t0/τ = 1.625 and 2 for γτ = 1.6 and 1.0, respectively.
In contrast, the oscillatory curve with γτ = 0.6 first crosses
the zero in the third interval.

our predictions for the three cases of algebraic, single de-
lay, and exponential memory. The latter, given by equa-
tion (5), has appeared not only in the damped harmonic
oscillator treated by the authors of reference [32], but in
numerous contexts, some to describe transport with an ar-
bitrary degree of quantum mechanical coherence [41–43].
Although its introduction in the latter references has oc-
curred in the context of site-to-site motion of a quasi-
particle, rather than of attraction towards a center as in
the present paper, many expressions obtained earlier, and
much of the intuition, can be ported over here. The Green
function λ(t) is well-known to be given by the simple
expression

λ(t) = e−bt/2 [cosΩt + (b/2Ω) sinΩt] , (27)

where Ω =
√

ω2 − b2/4. Standard features well-known
from other fields of study, ranging from quantum quasi-
particle transport to RLC circuits in electrical networks,
are easily noticed in equation (27): the original undamped
oscillator frequency ω, its reduction to Ω when damping
is introduced via the damping exponent b/2, the passage
from the damped oscillatory regime to the overdamped
regime when b/2 > ω when the trigonometric functions
change into their hyperbolic counterparts leading to fa-
miliar phenomena such as motional narrowing of spectral
lines.

5.1 Motional narrowing of spectral lines

We envisage two experiments that could be performed, in
principle, on our system. In one, our particles are charged
(but noninteracting among themselves), we apply a time-
varying electric field and measure the polarization and
therefore the susceptibility. Thus, equation (2), with the
label i suppressed, is augmented by an appropriate term
to give

dx(t)
dt

= −γ

∫ t

0

dt′ φ(t − t′)x(t′) + E(t) + ξ(t). (28)

Our interest lies in measuring the frequency-dependent
susceptibility which is the ratio of the Fourier transforms
of the polarization and the applied electric field. The term
E(t) is essentially the electric field and absorbs unimpor-
tant proportionality constants. The spectral line at fre-
quency f is proportional to 〈x̂(f)〉

Ê(f)
where the circumflexes

denote Fourier transforms and f is the frequency. We use
f rather than the more usual ω to distinguish it from
the oscillator frequency that we have already used in our
treatment.

A well-known phenomenon known in systems with a
simple exponential memory, as in the case of a damped
harmonic oscillator, is motional narrowing: spectral lines,
sharp if the damping in the system is vanishing or small,
broaden as the damping is increased but, after a critical
value of the damping is exceeded, separate lines coalesce
and increased damping narrows the line. The question we
ask here is whether this motional narrowing occurs also for
our algebraic and delay cases. One sees from equation (28)
that what is required is the one-sided Fourier transform of
the Green function λ(t): the frequency-dependent suscep-
tibility is proportional to 〈x̂(f)〉

Ê(f)
. From equation (27) for

the exponential memory and equations (14) and (26) for
the algebraic and single delay memories, respectively, we
have:

λ̂(f) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

f2+b2√
(f2−ω2)2+f2b2

Exponential, (29a)
1√

f2−2fτμ2 sin fτ+τ2μ4
Single Delay, (29b)

(|f |)ν√
|f |2(ν+1)−2(|f |ζ)ν+1 sin πν

2 +ζ2(ν+1)
Algebraic, (29c)

where we have given the absolute value of the Fourier
transforms. In equation (29b) we have introduced the co-
herence parameter μ for the delay case. It is analogous
to ω in the exponential case and ζ in the algebraic case
and is specifically defined via μ =

√
γ/τ .

We show the results of equation (29) in Figure 5 for
the exponential (left), single delay (center) and algebraic
(right) memories. Units along the vertical axis are arbi-
trary. The left panel depicts motional narrowing for the
exponential memory: two peaks broaden and then coa-
lesce into a single peak as the damping is increased. Sim-
ilar transitions are seen for both the single delay memory
(coherence measured by the value μτ) and the algebraic
memory (coherence measured by the value ν). The sin-
gle delay process is quite similar with the exception that
it develops additional symmetric peaks, indicated by the
arrows. The algebraic process, while also similar in the
overall aspects, exhibits sharp differences for small values
of f . The source of this peculiar behavior is the fact that
the integral of λ(t) over all time changes drastically as one
crosses from the oscillatory to the monotonic region. The
integral is 0 for positive ν and infinite for negative values
of ν.

The motional narrowing phenomenon [44] we have
discussed above is ubiquitous and appears in mag-
netic resonance observations [45], neutron scattering
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Fig. 5. Motional narrowing in the dependence of the a.c. susceptibility on the frequency, f , of the applied electric field. All
three cases, exponential (left), single delay (center), and algebraic (right), display two peaks in the coherent limit which, as
damping is increased, initially broaden more and more and move towards each other (to the center, i.e., the region f = 0). On
increasing the damping beyond a critical value in each case, however, the line narrows rather than broadens as the damping
is increased. Frequency is plotted on the horizontal axis in units of the coherent parameter ω, μ and ζ for the three respective
cases. Units along the vertical axis are arbitrary. Two arrows in the central panel locate the additional peaks that develop for
the single delay process. The sharp transition at f = 0 for the algebraic memory, which is a jump from a vanishing to an infinite
value, can be seen when comparing the ν = −0.3 case with the ν = 0.1 case.

experiments [46–51], and in numerous other contexts such
as optical absorption whenever there is underlying dynam-
ics of a system undergoing spectral diffusion. Such spec-
tral diffusion can arise not only from thermal motion in
an inhomogeneous medium as has been sometimes men-
tioned in the past but from a variety of sources including
changes in the bath fluctuation rate [52]. The simple ex-
ponential memory case we have mentioned for the sake of
comparison above can be seen to arise explicitly in the
magnetic resonance context. This can be noted clearly
in Appendix F of the text Principles of Magnetic Reso-
nances by Slichter [45] where the exponential nature of the
memory emerges simply on elimination of separate quanti-
ties M±, summing them to get the total magnetization M .
The original theory of motional narrowing was developed
by Kubo [44], a number of cases for neutron scattering
were treated for simple memories by other authors such
as Brown and Kenkre [47–51] and a recent lineshape the-
ory was given by Jung et al. [52] directed at the important
observation of power-law statistics in spectral diffusion.

5.2 Spatial extent in the steady state

What is the spatial extent of the particle in the steady-
state when the diffusive tendency to enhance it and the
attraction to the center to reduce it have balanced them-
selves? A number of experimental techniques could be de-
vised in principle to measure the spatial extent or size.
The size in the steady-state is given by the saturation
value of the MSD

〈
Δx2

〉
. The time-dependent MSD for

the exponential memory is given by,〈
Δx2

〉
(t)a =

D

ω

[
ω

b
+

b

ω
− be−bt

ω

(
ω4

b2Ω2
+

4Ω2 − ω2

4Ω2

× cos 2Ωt +
3ω2 − 4Ω2

2bΩ
sin 2Ωt

)]
. (30)

Although any two of the three parameters ω, b and Ω
uniquely determine the third, we have used all three here
and elsewhere to avoid cumbersome square roots in the
display. In the overdamped limit, i.e., when b > 2ω, the
above trigonometric functions turn into hyperbolic func-
tions as Ω becomes imaginary.

The MSD for the case of the single delay is:

〈Δx2〉(t)=2D

(
Θ(k)

k−1∑
l=0

∫ (l+1)τ

lτ

ds gl(γs) +
∫ t

kτ

ds gk(γs)

)
,

(31)
where gk(t) is defined as:

gk(γt) =
k∑

m =0

k∑
n =0

(−1)(m+n)

m!n!
(γt − mγτ)m(γt − nγτ)n,

in any interval, kτ ≤ t ≤ (k + 1)τ .
The MSD for the algebraic case is given by,

see equations (32a) and (32b) next page

with

A =
2

ν + 1
, C(r) =

rν sin νπ

r2(ν+1) − 2r(ν+1) cos νπ + 1
,

β = cos
(

νπ

ν + 1

)
, κ = sin

(
νπ

ν + 1

)
.

Our interest lies in the steady-state size of the particle
given by these expressions in the limit t → ∞. Calling the
saturation value of the MSD as the particle size S (in units
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〈Δx2〉(t) = 2D

∫ t

0

ds

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[∫ ∞

0

dr

π
e−rζsC(r)

]2
−1 < ν ≤ 0, (32a)[

Ae−βζs cos κζs −
∫ ∞

0

dr

π
e−rζsC(r)

]2
0 < ν ≤ 2, (32b)
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Fig. 6. Spatial extent of the particle in the steady-state, measured by the saturation value of the MSD at long times for: the
exponential memory (left), the single delay memory (center) and the algebraic memory (right). On the vertical axis, the size is
normalized to the steady-state size for the time-local case (φ(t) = δ(t)) with γ equal to the respective coherent parameter: ω
for the exponential memory, μ for the single delay memory and ζ for the algebraic memory. Dotted lines indicate the location
of the transition from monotonic (overdamped) to oscillatory (underdamped) regimes.

of area for our 1-dimensional system), we have

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

ω

(
ω

b
+

b

ω

)
, (33a)

D

μ

(
1 + sin μ2τ2

μτ cosμ2τ2

)
, (33b)

D

ζ

∫ ∞

0

∫ ∞

0

drdq

π2

2C(r)C(g)
r + q

, (33c)

D

ζ

[
A2

2

(
β +

1
β

)
− 4A

∫ ∞

0

dr

π

C(r)(β + r)
r2 + 2βr + 1

+
∫ ∞

0

∫ ∞

0

drdq

π2

2C(r)C(q)
r + q

]
, (33d)

where (33c) is for −0.5 < ν ≤ 0 and (33d) is for 0 < ν ≤ 1.
For the parameter range ν ≤ −0.5, the MSD diverges as,

lim
t→∞〈Δx2〉(t) ∝

{
ln t ν = −0.5,

t2|ν|−1 −1 ≤ ν < −0.5.

The MSD for the single delay memory, equation (33b), is
known to have the analytic expression shown above. It is
obtained by solving [38] the differential equation governing
the evolution of the covariance at long times.

Plots of the long-time expressions in equation (33) are
shown in Figure 6 for the exponential (left), single de-
lay (center) and algebraic (right) memories, respectively.
The MSD for all three memories are normalized using the
respective coherent parameters: ω, μ and ζ. In all three
cases, an increase in D leads to a monotonic increase in the
MSD. The exponential memory process has a symmetric

dependence on ω and b, with a minimum for b = ω. For the
single delay, only in the stable regime, μ2τ2 < π/2, is the
expression valid and, as expected, the MSD diverges as
one approaches the unstable limit. Both for the exponen-
tial and the single delay memories, the saturation value of
the MSD diverges as ω/b and μτ , respectively, approach
zero. In both these cases, the tendency to confinement
around the attractive center disappears since γ vanishes.

At long times, the MSD for the algebraic case di-
verges when ν → −0.5 from the right and when ν → 1
from the left. The divergence at the lower limit occurs
due to the long-time algebraic dependence of the Green
functions, equation (18). The value of ν for which the
steady-state size is minimum depends on the ratio of time
constants, γ/α. When this ratio is equal to 1, the min-
imum is at ν = 0. This is obvious in Figure 6. For an
arbitrary γ/α, the value of ν at the minimum is given by
the transcendental equation,

ln
γ

α
= −(νmin + 1)2

d

dν
ln F (νmin), (34)

where F (ν) is the functional form of the curve plotted in
the right panel of Figure 6. An increase in the ratio of γ/α
shifts the minimum rightwards, a decrease shifts it to the
left.

A fruitful comparison of the MSD dynamics can be
done by setting the parameters such that, �

∫∞
0 ds λ2

d(s) =
V , where � is the appropriate coherent parameter, is iden-
tical for all three cases. The saturation value of the three
memories are not comparable over the entire parameter
space. The single-delay process has a minimum MSD sat-
uration when 2μ2τ2 = cos(μ2τ2), i.e., a value V = 1.19,
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Fig. 7. Comparing the dynamics of the MSD for the algebraic
(straight line), exponential memory (dot-dashed line) and sin-
gle delay (dashed line) memories when their MSD have a mu-
tual saturation value. We set  equal to the coherent parameter
for each of the memories divided by the diffusion constant, i.e.,
ω for exponential, μ for the single delay, and ζ for the algebraic,
respectively. Two curves for each memory depict dynamics in
the underdamped regime and one for each memory in the over-
damped regime. The inset plot shows that same figure with
logarithmic axes.

while the exponential memory process has a minimum
value, V = 1 exactly when b/γ = 1. For these parame-
ter values, the algebraic memory has a minimum value of
V = 1/2 located at ν = 0.

We select values of V > 1.19 from the algebraic
long-time MSD, equations (33c) and (33d), and solve
the exponential and single delay memory expressions in
equations (30) and (31) to obtain

ω/b = V ±
√

V 2 − 1

and

sin(μ2τ2) =
[
(2V μτ)2 − 1

]
/
[
(2V μτ)2 + 1

]
,

respectively. For the exponential memory we choose the
negative branch, ω/b = V − √

V 2 − 1, for the monotonic
regime and the positive branch, ω/b = V +

√
V 2 − 1, in

the oscillatory regime.
Using these values of V , ω/b and μτ we plot in Figure 7

the dynamics of the three memories. In the oscillatory
regime, all three memories exhibit the apparent satura-
tion behavior associated with the oscillations of their re-
spective Green functions. The single delay memory clearly
saturates the fastest. The exponential and algebraic mem-
ories have very similar MSD, with the exponential memory
initially larger. In the overdamped regime, the algebraic
memory saturates much slower due to its heavy tail.

6 Discussion

The focus of this paper has been the investigation of the
dynamics of a Smoluchowski system whose Langevin equa-
tion (see, e.g. Eq. (2)) describes the attraction, to a fixed

center, of a particle via a memory function correspond-
ing to a time-nonlocal process. The case when the mem-
ory function, denoted by the symbol φ in the paper, is
a simple delta function in time (time-local case), is text-
book material and leads to solutions of the correspond-
ing Smoluchowski equation via the Ornstein-Uhlenbeck
time transformation. We have investigated here the case of
two time-nonlocal memories of interest to certain current
applications in biological systems: the algebraic memory,
equation (12), and a delay case, equation (19), and com-
pared them with a standard exponential memory, equa-
tion (5), whose consequences are typically known in the lit-
erature. We find similarities across the three cases as well
as some distinguishing characteristics of each. The connec-
tion to the time-local case represented by φ(t) = δ(t) is
trivial in the case of the delay and the exponential cases
because, in both instances, the integral of the memory
over all time exists and equals 1. For the algebraic case
this is not true and leads to some peculiar behavior. Such
behavior and its analysis given in the present paper will
no doubt be of importance when parameters controlling
the non-Markoffian dynamics are strong. Even when they
are weak, the algebraic nature of the memory will ensure
that they must be generally taken into account.

6.1 Similarities and dissimilarities in the consequences
of the three memories

In all three cases, γφ(t) is convolved with the displace-
ment x(t) in the starting Langevin equation. The strength
of the confinement to the attractive center may be said to
be described by γ and the specific (memory) manner in
which the confining is done may be ascribed to φ(t). The
loss of coherence occurs at the rate b in the exponential
case, at the rate 1/τ equal to the reciprocal of the delay
time in the single delay case, and at α in the algebraic
case. The coherence parameter is ω in the exponential
case, μ =

√
γ/τ for the delay case and ζ =

√
γα in the

algebraic case. The three respective memories are found
in equations (5), (19) and (12).

The basic quantity that determines the behavior of
the system is the Green function λ(t). It is given gener-
ally in the Laplace domain by equation (6). In the time
domain it takes the form given in equation (27) for the
exponential memory, equation (26) for the delay mem-
ory, and equation (14) for the algebraic case. One of the
additional results of this paper is an alternate form, equa-
tion (15) that we have derived. We use it along with its
asymptotic form, equation (18), which is well-known in
the literature [33]. Both provide considerable computa-
tional convenience. While Figure 1 shows the Green func-
tion for the algebraic case in the underdamped and over-
damped regimes, Figures 2 and 3 display the usefulness of
the alternate forms we provide for the computations.

Noteworthy is the fact that the single parameter ν de-
termines in the algebraic case whether oscillatory (posi-
tive ν) or monotonically decreasing (negative ν) time vari-
ation obtains. Whereas for the other two memories, with
the coherence parameter (ω or μ) held constant, variation
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of the damping (b or 1/τ respectively) transitions the sys-
tem from the oscillatory to the overdamped regimes, varia-
tion of α with ζ held constant does not do anything similar
in the algebraic case. As a result of the scaling behavior
of the power-law dependence, the damping parameter α
introduced in the definition (12) of the algebraic mem-
ory in a manner analogous to the exponential case (5),
completely drops out of the picture in the Green function
(see Eq. (14)). The coherence parameter merely serves to
scale time and ν alone determines the oscillatory-decaying
transition. This remarkable feature of the algebraic mem-
ory stems from its scale-free nature.

The time-integral of the Green function from zero to
infinity, i.e.,

∫∞
0

λ(t)dt, is of direct relevance for several ob-
servables. Equation (6) shows that it is given by 1/γφ̃(0).
For the exponential and the delay memories, this presents
no problems but for the algebraic case one runs into the
peculiarity that φ̃(0) may not exist. Indeed,

∫∞
0 λ(t)dt

vanishes for positive ν but becomes infinite for negative
ν provided ν ∈ [−1, 0). One of the direct consequences
of this feature is the drastic jump from 0 to ∞ observed
in the spectral line at zero frequency f noted in Figure 5
which depicts motional narrowing of the a.c. susceptibility.

For algebraic and delay memories there is also the
regime of unbounded oscillations that occurs for |ν| > 1
and γτ > π/2, respectively. Because the regime is seldom
physical, we have shown it only passingly in Figure 4 and
only for the delay case, with an effect in the central panel
of Figure 5 where additional peaks in the spectral line
result.

6.2 Non-local attractive term in the Smoluchowski
equation

Although our focus in this paper is entirely on an anal-
ysis of the Langevin equation (with time non-locality),
let us recall that there are in the literature, already,
a number of discussions centered on probability den-
sity evolution [29–32]. These approaches aim to con-
struct an effective Fokker-Planck equation corresponding
to the non-Markoffian Langevin equation (2), in what
has been termed the bona-fide Fokker Planck descrip-
tion [30]. Given the memory in the Langevin equation,
what is required is a Fokker-Planck equation for the con-
ditional probability distribution rather than for the single-
time probability distribution, as would be appropriate in
the absence of the memory. Unfortunately, available in
the literature as a Fokker-Planck equation corresponding
to equation (2), with Gaussian noise, is only an equa-
tion for a single-time probability distribution [10,32]. Also,
the practical utility of that equation appears not to have
been tested. It is known to be undefined (drift and dif-
fusion coefficients blow up) when the mean of the dis-
tribution crosses zero [53]. Crossings of this kind occur
whenever the Langevin dynamics is oscillatory. It is be-
cause of these uncertainties surrounding Fokker-Planck
treatments of such non-Markoffian cases that we have re-
stricted our analysis here to consequences of a Langevin
equation. Let us, nevertheless, return briefly to the issue

about the generalization of the Smoluchowski equation.
In our introductory comments in Section 2, we mentioned
that, while one could be easily tempted into generaliz-
ing the standard Smoluchowski equation by incorporat-
ing a memory function in its attraction term to describe
the non-Markoffian pull towards the center, such a proce-
dure would be incorrect.

Such a generalization of the time-local Smoluchowski
equation (1) brought about by introducing a memory into
the attraction term, would result in

∂P (x, t)
∂t

=
∂

∂x

(
γ

∫ t

0

dt′ φ(t − t′)xP (x, t′)
)

+ D
∂2P (x, t)

∂x2
. (35)

Although we have seen in Section 2 that it is not possible
to deduce (35) from the Langevin equation with memory
(Eq. (2)), it is interesting to ask what consequences (35)
leads to, since it has the appearance of a natural general-
ization of equation (1) to incorporate a memory process in
the attraction. Through an integration by parts, and using
the physical expectation that P (x, t) vanishes sufficiently
rapidly at x = ±∞, we obtain equations for the moments
of equation (35) by multiplying it by xn and integrating
over x from −∞ to +∞. For the first moment, (n = 1),
we get:

d〈x(t)〉
dt

+ γ

∫ t

0

dt′ φ(t − t′)〈x(t′)〉 = 0. (36)

How does this result for the average displacement 〈x(t)〉
compare with one obtained from the correct general-
ized Langevin equation (Eq. (2))? Differentiation of equa-
tion (9) followed by the use of equation (6) show explicitly
that the evolution of the mean displacement as predicted
by the exact (2) is precisely that given by equation (36)!
While the first moment is given correctly by the inappro-
priate generalization (35), higher moments are not. For
n > 1, the moment evolution from equation (35) is:

d〈xn(t)〉
dt

+ nγ

∫ t

0

dt′ φ(t − t′)〈xn(t′)〉

=
n!

(n − 2)!
D〈xn−2〉. (37)

To see explicitly that higher moments predicted by the
incorrectly generalized Smoluchowski equation are inac-
curate, consider the n = 2 solution of equation (37). We
obtain

〈x2〉(t) = λγ→2γ(t)x2
0 + 2D

∫ t

0

dt′ λγ→2γ(t′). (38)

Here, by λγ→2γ is meant what is obtained by replacing γ
by 2γ in the expression for the Green function λ(t). Com-
parison to the correct moment (Eq. (14)), shows that the
higher moment prediction of the inappropriate general-
ization is always inaccurate except for the time-local case
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when φ(t) = δ(t) leading to an exponential λ(t) and to the
accidental correctness of the relation λγ→2γ(t) = λ2(t).

Situations of this kind, wherein lower moments are ac-
curately reproduced by an approximate description but
higher moments are not, are frequently encountered in
transport theory [54]. In the next subsection we will
see that, as a consequence of the above, although the
inappropriate generalization of the Smoluchowski equa-
tion accurately describes the motional narrowing phe-
nomenon (given that the latter depends completely on
the first moment), it fails to reproduce correctly the size
of the particle, time-dependent or steady-state. The size
is determined by the second moment.

6.3 Apparent violation of the Balescu-Swenson
theorem

There is a theorem in non-equilibrium statistical mechan-
ics, named after Balescu [55] and Swenson [56], that states
that, while non-Markoffian equations that are the con-
sequence of microscopic dynamics describe more accu-
rately the approach to equilibrium or the steady-state
than their Markoffian counterparts, their use is unneces-
sary for describing observables in the steady-state. This
is so because the latter are reproduced with perfect ac-
curacy by the Markoffian equations. The reasoning be-
hind the theorem can be understood by realizing that
the Markoffian approximation involves the replacement by
zero of the Laplace variable in the Laplace transforms of
memories; and that asymptotic results also require such
replacement in the implementation of Tauberian theo-
rems. Steady state results are asymptotic results valid at
long times.

While the Balescu-Swenson theorem is largely appro-
priate and highly useful, its non-judicious and blind ap-
plication can lead to misleading expectations. The present
analysis can provide an interesting example. In order to
understand the context, the usefulness, and the appar-
ent violation of the theorem here, notice that the the-
orem appeared in the work, first of Balescu [55] and
then of Swenson [56], about the time that the gener-
alized master equation (GME) made its important ap-
pearance. The GME arose in the fundamental work of
various investigators [57–62]. By dint of the memory func-
tion it possessed, the GME was able to access and de-
scribe short-time behavior of systems not accessible to
the Master equation. The latter is essentially the GME
with a delta-function memory. An object well-known be-
fore the advent of memories, it was the central entity
of non-equilibrium statistical mechanics and capable of
predicting irreversibility, approach to equilibrium and the
second law of thermodynamics.

Because the GME unravelled numerous features of a
system additional to those described by the (memory-
less) Master equation, it was of particular importance to
know, a priori, what descriptions made it essential to use
the GME in preference to the Master equation and for
what properties the Master equation was sufficient. The
Balescu-Swenson theorem performed this important task.

The theorem showed that, although frequency-dependent
quantities require the GME for their correct description,
dc transport coefficients do not: the latter are accurately
described by the Master equation without memory. Al-
though the theorem had been presented in detailed deriva-
tions in the original enunciations [55,56], the physical
understanding and origin of the theorem can be made
clear quite simply. Let us assume, e.g. in the context of
Ohm’s law, that one has solved for the time-dependent
current and thence for a transport coefficient such as the
ac conductivity. If the calculation uses a GME with mem-
ory φ(t), the expression for the current in the Laplace
domain will have inside it φ̃(ε), the Laplace transform
of φ(t). The Master equation (which is the GME with-
out memory) would replace φ̃(ε) by φ̃(0) and thus predict
a wrong current in general.

However, the Balescu-Swenson theorem pointed out
that in calculating a dc transport coefficient such as the dc
conductivity, equivalently the t → ∞ limit of the relevant
observable such as the steady-state current, one would
take the limit ε → 0 as part of a Tauberian argument.
One would then get nothing different from the prediction
of the memoryless Master equation: in the latter φ̃(ε) is
replaced by φ̃(0) from the very beginning. This applies to
various steady-state transport coefficients such as the dc
susceptibility, dc conductivity, viscosity, and ω = 0 values
of lineshapes.

Instances where the Balescu-Swenson theorem does
not apply have been pointed out earlier [42,63]. Physi-
cally, the apparent violation has been shown [42] to occur
when the particle under consideration has a finite lifetime
as is the case with an excitation (e.g. a Frenkel exciton):
the Balescu-Swenson theorem requires that motion over
the entire lifetime (or at least over much of it) be played
out.

It was surprising for us to find that the theorem fails
in spite of the fact that we have not assumed a finite life-
time. The saturation value of the MSD in our system,
in other words the steady-state size of the particle, is an
asymptotic quantity. Yet we find that its value is depen-
dent on the memory function and does not reduce to that
predicted by the Markoffian approximation (when such is
possible). This is clear from equation (33).

In order to clarify this further, we have constructed
Figure 8 to display the time-dependence and the satura-
tion value of the mean square displacement for the sim-
ple case of exponential memory, with γ held constant, for
three values of the damping parameter b/γ = 0.5, 2.5
and 12.5. The exact results are shown by dashed lines
and we see that the saturation size increases as b is de-
creased even though γ does not change. This is certainly in
conflict with the Balescu-Swenson statement if we assume
the saturation value of the particle extent to be a valid
steady-state observable in the language of the theorem.
Figure 8 also shows the interesting result that the incor-
rectly generalized Smoluchowski equation whose predic-
tions are shown in solid line for the corresponding values
of the memory parameters do follow the Balescu-Swenson
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Fig. 8. Time-dependence of the extent of the particle (as mea-
sured by the value of the MSD) and apparent violation of the
Balescu-Swenson theorem. The MSD for the exponential mem-
ory is plotted for a constant γ and three values of the damping
parameter b/γ: 0.5, 2.5 and 12.5. The correct results as given
by our theory, (30), correspond to the dashed lines. Their sat-
uration values are seen to increase as b/γ is increased. As all
cases have the same γ, that increase signifies a violation of
the Balescu-Swenson theorem. By contrast, all three solid lines
which are predictions of the incorrect generalization, (38), of
the Smoluchowski equation (see text) saturate to the same sin-
gle value (as given by the time-local equation) even though the
corresponding values of b/γ are different (as in the respective
dashed line cases).

theorem. The solid lines2 all go to the same saturation
value of the size that would have been obtained for the
time-local situation.

Needless to say, the original context of the Balescu-
Swenson theorem did not include systems such as the one
treated in the present paper. What precise feature of our
system makes the theorem inapplicable? The simple an-
swer to this question is that, whereas the theorem deals
with situations in which the memory describes the entire
process, the memory we consider here refers only to a part
of the process. It appears only in the systematic term of
the Langevin equation (2).

6.4 A comment on two-time correlation functions

Two-time correlation functions, such as 〈x(t)x(s)〉 and
their antisymmetrized combination f(t, s) which is termed
in some quarters as their covariance, are of importance
in physical situations in which, in addition to the ini-
tial time, two more times rather than a single one are
of importance. As a practical example, consider an elec-
tric current placed initially in a conductor in some man-
ner. The current is disappearing as the system relaxes to
equilibrium. At a certain instant s before equilibrium is
reached, a time-dependent electric field is switched on. At
a later time t the time-dependent current is measured. The
analysis of such an experimental set-up clearly requires
〈v(t)v(s)〉, the two-time autocorrelation of the velocity
(instead of x) [64]. Studies of two-time correlations have

2 Care must be taken not to take these predictions of the
incorrect generalization of the Smoluchowski equation too se-
riously. There are physical parameter ranges in which the solid
lines can dip below zero. The negativity is simply a consequence
of the fact that equation (35) is not fully accurate.
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Fig. 9. The two-time auto-correlation function plotted as a
function of the difference of the times t and s for all three cases
of the memory function, along with the limit of no memory.
We depict f(t, s)/D on the y-axis and t−s on the x-axis, both
in units of 1/γ. The sum of the times is held constant at a
reasonably large value, γ(t+s) = 30 while the difference γ(t−s)
is varied over the range [0, 30]. Parameters are chosen so that
the same Markoffian limit is obtained for all three memories,
exponential (dashed line), algebraic (dotted line) and single
delay (dot-dashed line). We show only the underdamped case.

also been given in the context of aging [65,66]. We have
provided general expressions for 〈x(t)x(s)〉 and f(t, s) in
equation (10) and (11), respectively in terms of the Green
function λ(t). For instance, for the case of an exponential
memory, we have

f(t, s) =
D

ω

{
e−

b
2 (t−s)

([
b

ω
+

ω

b

]
cos [Ω(t − s)]

+
b2 − ω2

2Ωω
sin [Ω(t − s)]

)
−be−

b
2 (t+s)

ω

(
ω4

Ω2b2
cos [Ω(t − s)]

+
4Ω2−ω2

4Ω2
cos[Ω(t+s)]+

b2−ω2

2Ωb
sin [Ω(t+s)]

)}
.

(39)

The Markoffian counterpart, obtained by taking the limit
b → ∞, ω → ∞, such that ω2/b = γ, is:

f(t, s) =
D

γ

(
e−γ(t−s) − e−γ(t+s)

)
. (40)

Neither of these quantities, needless to say, is a func-
tion of merely the difference t − s. As expected, the non-
Markoffian two-time correlation function differs from its
Markoffian counterpart at short values of the difference
t − s but tends to the latter for large values. We depict
this behavior for the underdamped case graphically in Fig-
ure 9 for all three cases of the memory by fixing the sum of
the two times and varying the difference. Two features are
clear, one at short and one at long t − s. As expected, all
cases tend to the Markoffian limit at large values of t− s.
At short times, on the other hand, they all are different.
This is so because there they depict the (dimensionless)
mean square displacements which we have seen indeed
differ, representing the violation of the Balescu-Swenson
theorem.
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