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Abstract-The dynamics of a hydrogen atom confined to a pair of sites and interactmg with a heat bath 
is considered using a stochastic Liouville equation (SLE). A modification of the standard degenerate-pair 
SLE is introduced to accommodate a non-degeneracy in the site energies, as is believed to occur in 
NbO,H,. Neutron scattering lineshapes are obtained explicitly, based on the modified SLE. A non- 
degeneracy in the site energies is shown to result in a coexistence of lineshape structures which may be 
associated with coherent and incoherent transport mechanisms. It is pointed out how this structure, which 
is characteristic of non-degenerate systems, may appear as a consequence of strong coupling of the 
hydrogen motion to phonons, even in impurity systems for which the electronic site states are nominally 
degenerate. 
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1. INTRODUCTION 

In previous papers [ 1,2] the authors have calculated 
lineshape functions for incoherent neutron scattering 
based on equations of motion for reduced density 
matrices of mobile hydrogen atoms in metal hydrides. 
The equations of motion have been forms of the 
stochastic Liouville equation, whose effective bath- 
interaction terms provide a model for the thermal 
degradation of the coherent evolution characteristic 
of the eigenstates of a closed system. Such models of 
microscopic dynamics and the determination of their 
consequences in neutron scattering have come to be 
of interest due to the observation of inelastic peaks 
in spectra obtained at low temperature from hydro- 
gen dissolved in NbO,. The interpretation being 
given to a growing body of experimental work [3-lo] 
is as follows: with decreasing temperature, a fraction 
of the H population in a NbO,H, system becomes 
trapped in the vicinity of 0 impurities due to the 
strains resulting from the distortion of the Nb lattice 
by the 0. The interstices near an 0 impurity may be 
classified and the possible distributions of an H atom 
among them examined in the face of the existing data. 
Magerl et al. [9] have concluded that the data may be 
consistently interpreted if the H atom occupies one of 
several pairs of tetrahedral interstices equidistant 
from the 0 impurity, in its second-neighbor shell. It 
may be argued that if tunneling occurs at all, tunnel- 
ing between distinct pairs should be negligible, so that 
it is sufficient to consider the hydride as containing an 
ensemble of two-site systems. The observed inelastic 

peaks have been taken to be the consequence of 
tunneling within such pairs. The relative intensities of 
the quasielastic and inelastic peaks have suggested 
that the site energies within a pair are not identical. 

Such a local system-a single particle confined to 
a few sites-presents a transport problem which 
differs from that found at higher temperatures; how- 
ever, it allows the motion of interstitial hydrogen to 
be studied in a simplified situation. The impurity 
system and the tunneling-state interpretation of its 
dynamics carry a special importance for the study of 
non-trapped hydrogen because of the continued ab- 
sence of any clear evidence from experiments on pure 
hydrides that interstitial hydrogen atoms exist in 
tunneling states at any temperature. It is apparent 
that the motion of hydrogen atoms in extended 
systems is either incoherent or nearly so. An adequate 
description of hydrogen transport in extended sys- 
tems based on tunneling states must therefore possess 
the ability to unify or interpolate between the ex- 
tremes of coherent and incoherent transport. Sto- 
chastic Liouville equations are particularly useful in 
this context in that they retain generic features of 
system-bath interactions that lead to the breakdown 
of coherence, yet allow the phenomenon of inter- 
mediate transport coherence to be simply para- 
metrized [ll-161. The hydrogen atom trapped at an 
impurity provides a laboratory in which the con- 
sequences of such models may be determined with 
relative simplicity. 

The primary interest of the first experiments was to 
determine whether or not trapped hydrogen atoms 
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occupied local tunneling states at low temperatures. 
The conclusion is largely affirmative in NbO,H, [8]. 
More recent studies over a range of temperatures [ 101 
sought to determine how these tunneling states are 
destroyed with increasing temperature, i.e. how co- 
herence is lost as a result of the interaction with the 
heat bath constituted by the rest of the solid. 

A fully quantum mechanical treatment of hydro- 
gen transport must address the difficult problem of 
the host-interstitial interaction, at least to the level of 
the interstitial-phonon interaction. Considerable 
complexity results from such interactions, even for a 
simple model of the unperturbed tunneling process. If 
the interaction is weak, the primary effect of phonons 
is to scatter a particle among the eigenstates of the 
unperturbed system. Although the strong coupling 
case continues to present difficulties for transport 
theory, some progress can be made through the 
theory of transport by polaron mechanisms 
[ 11, 12, 17, 181. A systematic approach to the strongly 
coupled problem can be made in the basis of polaron 
states, in which the effect of residual phonon inter- 
actions is to scatter a polaron among the polaron 
states. 

While the earlier work of Wipf et al. [S] gave 
consideration to polaron effects, and hence the 
hydrogen-phonon interaction, the more recent work 
of Magerl et al. [lo] suggests that the observed 
temperature dependences are attributable to electron 
scattering. In order to account for the damping effects 
due to the hydrogen-phonon interaction and/or elec- 
tron scattering, there are two essential questions: (1) 
What are the states connected by the scattering 
(dampingj mechanism, and (2) What are the tem- 
perature dependences of the relevant scattering rates? 
In this paper, we are concerned with the former 
question. In section 2 we consider the states con- 
nected by thermal scattering to be the eigenstates of 
the isolated two-state system; in section 3 we consider 
the relevant states to be the corresponding polaron 
states, In each case, we determine the manner in 
which broken site-symmetry alters the manifestation 
of system-bath interactions in neutron scattering. 
Since we leave the temperature dependences of the 
microscopic scattering rates undetermined, both elec- 
tron and phonon scattering mechanisms are sub- 
sumed. 

In this paper we model the evolution of trapped 
hydrogen with a stochastic Liouville equation (SLE) 
[19] and, with the help of methods developed in Ref. 
[l], evaluate the incoherent neutron scattering func- 
tion for a non-degenerate pair of sites. Being a 
high-temperature equation, the SLE fails to re- 
produce some of the properties expected in 
finite-temperature results. A detailed study of this 
difficulty was made in Ref. [l] and a presc~ption was 
provided for its resolution. The prescription consists 
of a symmetrization procedure which restores the 
exact detailed balance properties to scattering line- 
shapes calculated from the SLE. Since the pre- 

scription is appropriate also to the two-state system 
considered in the present paper, we restrict our 
attention to the symmetric part of the scattering 
lineshape; it being understood that complete tem- 
perature dependences are to be obtained through the 
procedure of Ref. [l]. 

The scattering function S(q, co) may be obtained 
from the Laplace transform of the intermediate scat- 
tering function I(k, t) through the relation 

Sh, w) = i Re[f(q, iw)l, (1.1) 

in which the Laplace transform is indicated by a tiide. 
On rewriting I(q, t) as a trace with a quasi-density 
matrix p’(t) 

I(q, 2) = Tr[eq x(e-‘x’pO e-q x e’“‘)] (1.2a) 

s Tr[eq Xp’(t)], (1.2b) 

the quasi-density matrix is found [I] to follow the 
same equation of motion as the true density matrix, 
but to propagate from the non-standard initial value 
p ‘(0) = p (0)e -4 x. 

The simplest SLE for transport among ener- 
getically degenerate sites has the form 

P,= -WPl,-41 -&r&Ln> (1.3) 

with h = 1. In this basis of site states, the Ham- 
iltonian for the degenerate two-state problem is rep- 
resented by 

ff= O v [ 1 v 0’ (1.4) 

If one defines the new variables 
R*(t) = p;,(t) +-p&(t), one can express the Laplace 
transform &q, io) of the intermediate scattering 
function using only part of the full density matrix 
solution: 

7(q, iw) = A+(iw)cos 
( > 

‘$ - iR”-(io)sin 
( 1 

‘$ , (1.5) 

For the evaluation of the scattering function one 
requires the initial values 

R +(O) = cos , 

(1.6b) 

which, when used in eqn (1 S), give 

1 4V2a 

lr (4V2 - ,2)2 + c&X* 
sin* qA . (1.7) 

( > 2 
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Fig. 1. Quasielastic scattering function for a particle 
confined to a degenerate pair of sites. The variation in 
lineshape reflects the variation in the degree of transport 
coherence. Parameter values: (a) a/2V = 0.25, (b) a/2 V = 

1.0, (c) af2V = 4.0 and (d) a/ZV = 8.0. 

The nonelastic part of eqn (1.7), i.e. the second term 
on the right side, is presented in Fig. 1. For small tt, 
this is a doubly peaked function with distinct inelastic 
peaks centered at w = +2V, corresponding to 
neutron-induced transitions between well-defined 
tunneling states. With increasing a, these peaks 
broaden and shift toward zero frequency. When u 
reaches the value 2$V, the inelastic peaks merge 
into a single quasielastic peak which approaches the 
asymptotic Lorentzian form 

(1.8) 

where r = 4V2/u. The condition for this form to be 
valid is that CI >>2fiV >>,,~%0. This inequality im- 
plies that the portion of the lineshape which is well 
represented by a single Lorentzian must lie well 
within the band of frequencies Aw defined by the pure 
tunneling transitions at f 2 V. Conversely, experi- 
mental observation of a Lorentzian lineshape in such 
a system would indicate that the tunneling matrix 
element responsible for transport is greater than the 
halfwidth of the observed Lorentzian line. This is 
consistent with the existing experiments on trapped 
hydrogen [8, 10,20] where early experiments yielded 
Lorentzian lineshapes (HWHM x 0.05 meV at 
150 K) [20] which fell well within the tunneling peaks 
resolved in later experiments at lower temperatures 

(Aa x 0.4 meV at 0.09 K) [8]. It is thus possible that 
motional narrowing of the tunneling doublet may be 
able to account for lineshape structure over the entire 
temperature range. 

2. NON-DEGENERATE STATES 

It is thought on the basis of the coherent tunneling 
interpretation of scattering data that a two-state 

model of impurity-trapped hydrogen must incorpo- 
rate a relative shift in the site energies due to strain 
fields of surrounding impurities [8-lo]. In order to 
incorporate such a non-degeneracy in the site ener- 
gies, the SLE (1.3) and the transport analysis follow- 
ing from it must be modified. The simple procedure 
of maintaining eqn (1.3) but replacing eqn (1.4) by 

H= E, v 
[ 1 V E; ’ 

(2.1) 

where E, and E2 denote the site energies, fails because 
it does not account for changes in the form of the 
bath interaction terms in the site representation 
caused by the lack of degeneracy. We wish to describe 
the dynamical consequences of microscopic scatter- 
ing processes which induce transitions between the 
pair eigenstates. In the degenerate case, the site 
energy difference A = E, - E, = 0, and the eigenstates 
are simply the “Bloch states” of the pair 
1 f > = (l/4)(1 1 > + 12 > ). However, in the non- 
degenerate case, A # 0, and the form and evolution of 
the eigenstates differ from that of the Bloch states. 

The idea behind the modi~cation of the SLE we 
carry out here is similar in spirit to, but different in 
content from, a modification carried out by Rahman 
et al. [ 131 in their study of fluoresence depolarization 
of optical excitations in molecular solids. As in Ref. 
[13], we take the SLE to have a specific form in the 
basis of H-eigenstates, regardless of the degree of 
degeneracy. The physical content of this assertion is 
that we take the bath interactions to be sensitive 
primarily to subsystem eigenvalues and insensitive to 
subsystem spatial symmetry. We then transform the 
SLE into the site representation. The details of our 
modification are in the Appendix, eqn (A.3) being the 
modified SLE in the eigenstate representation. The 
result is that in the basis of sites, system-bath inter- 
actions bear explicit dependences on the degree of 
degeneracy: 

P,,= +iI%-&%1)-&Y -7’) 

-&(Y + Y’){A(Pu - ~22) 

+ 2 I%% + P2I I> t (2.2a) 

(2.2b) 

(2.2c) 
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(2.2d) 

in which the energy difference between the ei enstates 
of the non-degenerate pair is E = + A +4V .The 
scattering rate (w has been replaced in the non- 
degenerate case by a pair of scattering rates y and y’ 
which may be taken to be related thrbugh detailed 
balance such that y ‘/r = e -BE. (In the limit A -+ 0 we 
find that cc++(r + y’).) Thus, the appearance of a 
single rate a in the usual SLE is an accident of 
degeneracy. One consequence of the modification is 
the appearance of new terms in the SLE identifiable 
as “hopping” terms, i.e. terms representing incoher- 
ent transfer between site states. These terms arise 
from the incoherent scattering between eigenstates 
because deviations from degeneracy cause the eigen- 
states to be rotated away from the Bloch states, with 
the consequence that previously forbidden transitions 
between site states become allowed. 

Equations (2.2) are the starting point for our 
calculations of neutron scattering lineshapes. They 
may be solved immediately to yield the Laplace 
transform solutions 

k+(c) = fRi(O), (2.3a) 

R1-(c)= _’ NY -Y’) 
tE(c +y +y’) 

+ 2~~~(0)-2A~~-~(~~ +y’)S(O)i-4V2E-*(t +y +y’)R-(0) ~. 
e(t i-y +Y’)+P 

(2.3b) 

The initial values for the quasi-density matrix in this 
case are given by 

(2.4a) 

R-(O)=isin ‘$ 
( > 

- 4 tanh(~)~os~~), (2.4b) 

= ig tanh(~)sin~~j; (2.4d) 

however, in this two-state problem, application of the 
symmetrization procedure [1] has the effect of elimi- 
nating the temperature-dependent contributions to 
the initial data. The consequence is that the relevant 
initial data for the non-degenerate case are the same 
as those of the degenerate case, eqn (1.6). 

The modified equation results in the scattering 
function 

S(q, co) = qw)cos* ( > !$f 

+A 
46Y f?‘) 

n(w*-P)2+W2(y +y’)* 

x sin* y . 
( > 

(2.5) 

Typical examples of this lineshape are shown in Figs 
2 and 3. The coherence parameter is given here by 
(1: + r’)/2 V. The present results differ from those of 
the degenerate case (Fig. 1) in that the tunneling 

0.0 ’ . , * 8 ’ , * 

-2.0 4.0 0.0 to : 3 

Fig. 2, Quasielastic scattering function for two non- 
degenerate sites, evaluated using eqns (2.2). The coherence 
parameter (y + r’)/2V has been set equal to unity, reflecting 
modestly coherent transport. Each curve represents a 
different A and Y constrained so that E is the same for ah 
curves. Defining sin8 = A/E and co& = 2V/E, we have: (a) 
B =0,(b) @ = x/8, (c)t? = x/4.(d) 8 = 3n/8 and (e) 0 = x/2. 
The dotted curves (6 = n/8, x/4,3x/S) represent systems in 
which both A and V are non-zero. The solid curves (0 = 0, 
x/2) represent the extremes of pure tunneling between 
degenerate sites, and pure hopping between non-degenerate 
sites, respectively. The latter case results in a Lorentzian . . * - \-, \ / nnesnape. 
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Fig. 3. Quasielastic scattering function for two non- 
degenerate sites, evaluated using eqns (2.2). The coherence 
parameter (y + y’)/2Y has been set equal to 0.25, reflecting 
transport more coherent than that in Fig. 2. The dotted 
curves (0 = 0, n/2; tan0 = A/2V) represent the extremes of 
pure tunneling between degenerate sites, and pure hopping 
between non-degenerate sites, respectively. The solid curve 
(0 = 3x/8) represents a tunneling system in which A/E = 
0.92, i.e. more than 90% of the eigenvalue separation E is 

due to static inhomogeneity. 

peaks are shifted to the positions of the new eigen- 
values, and a central peak having the form of a 
Lorentzian has emerged. The strength of the tunnel- 
ing peaks has been reduced from unity to 
4V2/A2 + 4V2. One may say that the Lorentzian 
component is always present, with a strength given by 
AZ/A2 + 4 V2, since in the limit of degenerate site states 
the strength of this component vanishes. The central 
Lorentzian is directly due to the ‘hopping” terms 
which appear in the non-degenerate basis as a mani- 
festation of the bath interactions. That such a peak 
must appear in the absence of degeneracy may be 
seen by noting that in the V +O limit, scattering 
between eigenstates continues to occur; however, in 
this limit the eigenstates and site states become 
identical. The incoherent scattering between eigen- 
states is thus transformed into an incoherent trans- 
port channel. The failure of such a peak to emerge 
from the usual SLE is a shortcoming which is reme- 
died by the present modification. 

3. DEGENERATE, INEQUIVALENT SITES- 
COUPLING TO PHONONS 

In this section we point out how our analysis of the 
non-degenerate pair of sites given above may have 
relevance to a physical system in which no static 
nondegeneracy exists. Our present concern is that 
broken site symmetry caused by disorder in the 
impurity strain field may affect the hydrogen-phonon 
coupling, and in this way introduce nondegeneracy 
through polaron effects. The breaking of spatial 
symmetry may affect quantities other than the site 

energies. Magerl et al. [lo], for example, have consid- 
ered in addition a distribution of tunneling matrix 
elements. The polaron effects we consider below 
extend also to the tunneling matrix elements; how- 
ever, this does not materially alter the discussion and 
so is not addressed explicitly. 

When the width of a particle’s energy band is 
narrow with respect to the bandwidth of phonons, 
the particle cannot be scattered through interactions 
with a single phonon [20]. The dominant scattering 
mechanism due to phonons is then expected to be a 
two-phonon process, unless temperatures are so low 
that impurity-assisted one-phonon processes emerge 
as the dominant mechanism. An alternate mechanism 
has been proposed for the case of mobile particles on 
non-Bravais lattices. Teichler and Seegar [21] have 
shown that differences among phonon coupling con- 
stants at sites of different symmetry will generally 
result in a T-’ dependence in the transition rate at 
low temperature. Their demonstration was based on 
the linear coupling Hamiltonian 

H = c &, a t,, a,, + c Vmln, at,, a,, 
In., m.n,r., 

+Chw,bt,b,+ c XIhw,QRR” 

x ;bt-,+b,)atlYm,. (3.1) 

In eqn (3.1) a,,,, destroys a particle at the interstice i 
of unit cell m, b, destroys a phonor? of mode q, and 
R,,, is the position vector assigned to the unit cell m. 
It is easy to see that eqn (3.1) leads to an effective 
non-degeneracy in the “polaron” site states even 
when the “bare” site states are degenerate. If one 
defines polaron operators A,,,, = emsa,,,,es, etc., where 

S= C XPhw,e -qRm(bt~9-b~)at,,a,,, (3.2) 
g,m.r 

the Hamiltonian for a single particle takes the form 

H=~(E,,-~l~Pl~ho,)At,,A,,+~~wqBtqB, 
m.r q 9 

+ 1 Vm,n,Atm,A,,exp C(x?e-q Rm 
rn,“.8,J { 4 

- Xqe-q4’Rn)(Btq - B_q) 
1 (3.3) 

It is common practice [ 11, 121 to separate the transfer 
interaction into its thermal average and a remainder 
term containing the transformed phonon operators 
BP. The averaged terms constitute a band Ham- 
iltonian and the remainder term induces transitions 
among the corresponding band states. The averaged 
band Hamiltonian may be written 

(H) = ~&,Af’miAmr + c V,,,exP 
m., fn.“.8,, 

x coth A t,,A,,, (3.4a) 
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-Gun, = lxfl’+ Ix;l” - 2Re{x!‘x;qcosh*tR, - R,)l~ 

+ 21m(XBX;4 sin[q.(R, - R,)]j. (3.4b) 

Although the above results are well known, several 
observations are of interest in the present context. In 
the case of non-Bravais lattices, the coupling function 
XL,, may be of lower symmetry than the tunneling 
matrix elements V,,, . In such a case the effective 
tunneling interactions of the dressed particle created 
by At,,,, are of lower symmetry than those of the bare 
particle created by u?~,. Such a reduction in sym- 
metry can produce a gap in the (H) band structure 
which wili generally allow the one-phonon process 
since energy and momentum conserving transitions 
may take place across the gap with the emission or 
absorption of a single phonon. 

The foregoing discussion holds for the two-state 
system of present interest if all sums over unit cell 
labels are restricted to the single label of the cell 
containing the relevant pair of interstices. The 
effective site energies have the form 

and the effective tunneling matrix element is 

in which unit cell indices have been suppressed. 
Following the above, we may immediately write the 
(H) eigenvalues for the two-site system as 

MT)=;(&+k~+(-) 
&, - &)‘+ 41 p,;2(T)[2). (3.5) 

The existence of a “gap” is dependent on whether or 
not the site energy difference 

is non-zero. The polaron shift & differs from the static 
shift A only if there is a difference in the polaron 
binding energies at the two sites. This would not be 
possibie but for disorder, since sites 1 and 2 belong 
to the point group of the isolated impurity [9]. 
However, the same disorder which allows the would- 
be “symmetry-equivalent” sites 1 and 2 to have 
different static energies E, and E2 allows the polaron 
binding energies to differ at these sites. Equation 
(13.6) shows that the coupling of a particle to the 
phonon field may produce an effective site energy 
difference a, even if A = 0. If the consequences of the 
remaining terms of the Ham~ltonian (H - <H)) may 
be approximated through a scattering mechanism as 
discussed in section 2, then our analysis shows that 
such a “gap” would introduce hopping terms into the 

density matrix equation of motion and be manifested 
as a central peak in the neutron scattering lineshape. 

Since the gap energy is independent of temperature 
in this approach, the hopping mechanism and its 
concomitant scattering peak would be expected to 
cont~bute at all tem~ratures unless J&K pi;,,(O). The 
strength of such a peak would be temperature de- 
pendent through r,2(T), and should increase with 
increasing temperature approaching unity at infinite 
temperature. The shape would be independently de- 
termined by the damping parameters. The positions 
of the tunneling peaks should also depend on tem- 
perature through P,,(T); however, such shifts may be 
mixed with dynamical shifts o~~nating in the mo- 
tional narrowing phenomenon and thus may prove 
difficult to interpret. 

It is thus possible to arrive at the same scattering 
law from quite different microscopic considerations. 
if the site energy difference A is given the strictly 
inhomogenous interpretation, the arguments of sec- 
tion 2 apply and the resultant lineshape must be 
averaged over the appropriate dist~bution of A’s If, 
on the other hand, A is given the inte~retation of this 
section, i.e. 3, definite modifications and temperature 
dependences are imphed as well. 

4. SUMMARY 

With the help of a formalism constructed recently 
[ 1,2] for the purpose, we have calculated lineshapes 
for the scattering of thermal neutrons by a particle 
which is confined to a pair of non-degenerate sites and 
is interacting with a heat bath. The physical systems 
addressed consist of hydrogen atoms moving among 
interstices in the vicinity of impurity atoms in metals 
[3-IO]. The lineshapes we have calculated show ex- 
pected features such as motional narrowing (or 
broadening) for strong (or weak) system-bath inter- 
actions. 

In order to calculate the lineshapes, we have intro- 
duced a modification into the standard stochastic 
Liouville equation. This modification is required in 
order to accommodate the non-degeneracy in the site 
energies which tunneling-state analyses of recent ex- 
perimental results suggest exists in the metal hydrides 
studied. Our analysis results in a coexistence of 
lineshape structures normally asssociated with coher- 
ent and incoherent transport mechanisms. In the 
present case, however, the mechanism is one and the 
same for both types of motion. The difference in the 
site energies is responsible for allowing the bath to 
induce transitions between the two site states directly, 
i.e. without mediation by the tunneling process. Since 
the bath-induced transitions occur incoherently, a 
purely incoherent channel of motion is introduced. 
The component of the fineshape att~bu~ble to CO- 

herent processes is identical in form to that resulting 
for degenerate site states. The component attri- 
butable to incoherent processes is a Lorentzian whose 
width is given directly by the rates of bath-induced 
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transitions between the pair eigenstates. The relative 
strength of the two contributions is controlled by the 
relative values of the tunneling matrix element and 
the difference in site energies. 

The traditional approach to problems involving 
strong phonon coupling employs a canonical trans- 
formation [l 1, la] to states reflecting a relaxation of 
a deformable lattice about a particle coupled to it. We 
considered the foml of the Hamiltonian which results 
from such a transformation in the present case, and 
showed how inelastic and quasielastic structure may 
appear simultaneously, even for degenerate site 
states. It was shown that an effective site energy 
difference may appear if the particle couples to the 
phonon field differently when occupying different 
sites as is generally the case ir disordered systems. 
The parameters entering the lineshape calculation 
bear explicit temperature dependences due to polaron 
effects. Within the model considered, the strength of 
the quasielastic component increases from a mini- 
mum at zero temperature to unity at high tem- 
perature, and the strength of the inelastic component 
decreases ~rr~pondingiy from a maximum at zero 
temperature to zero at high temperature. In no case 
is the relative strength of the two components affected 
by the rates of bath-induced transitions; these affect 
the shapes of the separate components only. 

The specific calculations we have shown and the 
figures we have dispiayed correspond to the sym- 
metric part of the lineshape onIy. The complete 
lineshape for a particular tem~rature may be ob- 
tained by applying the prescription given in Ref. [I], 
using the transition rates y, y‘ appropriate to the 
given temperature. 
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APPENDIX 
Density matrix elements in a basis of localized states ( plz, 

etc.) may be obtained from the Hamittonian eigenstates &, 
etc.) by orthogonal transformation, expressed through the 
transformation equations: 

~,,=~@,+p,.)+~@,-p,,)-~~~,fp,). (A.la) 

f%=;@,+Pw)-$@, -P,) + $P~~ + P,), (A.lb) 

P*2=;ti ,,w - P,) +&P,,. + P,) + ;tisP -P,,)> (A.14 

1 
PZl = +P”@ -P,,)+%@,+P”~)+~@~~-P,“), Wd) 

and their inverses 

pw = $P,, + pu) + $@,, - PU) +gb + ~~~1, @.W 

P,=f@,,+P22)-~@II-Pn)-~~,~+P*I), (A.2b) 

PJW = f@ 
A V 

,~-P~,)+~E(P,~+PzI)-E@,,-P~~)~ G4.W 

~,=5@r,-~12)+$(~,2+~*,)-~@,,-~22). (A.=) 

Here Hb = Hz, = V, A = EI - E,, and E = Jm. As 
in the treatment of Rahman ef al, {13]-see their eqn 
(3.7)---we use the following form of the SLE in the repre- 
sentation of eigenstates fi, v: 

PflI, = -YPw + Y’Pw (A.3a) 

P, = +YPp, - Y’PW (A.3b) 

&.= --iEp,,--ffy +r’fCp,,- P,X (A.3c) 

b,*fl = +iEP+ + $Y f Y’NP,,, -P,). (A.3d) 
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The off-diagonal elements oscillate at frequencies k E and 
the diagonal elements equilibrate through scattering at rates 
y and y’ related to each other through detailed balance. 
~fferentiating the eqns (A.1) for p,,,,, and su~tituting eqns 
(A.3), we find 

41 = -A(? -Y’)(P~~--_p..)+iv(~,,-~,,), (A.4a) 
02, = +,,v + P,,) - $A - Y - r’l@,, - pv,,) 

(A.M) 

Pa = i&(r -Y’)@, - P,,) - WP,, -P,)> fA.W Finally, appiymg the transformations (A.2) yields the de- 
sired form of the SLE in the site representation, viz. (2.2). 


